

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064b-v-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4:PIN NAMES FOR 28-PIN USB DEVICES

28	28-PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)										
	1 SSOP	28	1 SOIC	28	1	28 SPDIP					
	PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B										
Pin #	Full Pin Name	Pin #		Full Pin N	Name						
Pin #	Full Pin Name	Pin #	VBUS	Full Pin N	Name						
Pin # 1 2	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	Pin # 15 16	VBUS TDI/RPB7/CTED3/PM	Full Pin N	Name						
Pin # 1 2 3	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	Pin # 15 16 17	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE	Full Pin N D5/INT0/RE	Name 37 /RB8						
Pin # 1 2 3 4	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	Pin # 15 16 17 18	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9						
Pin # 1 2 3 4 5	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	Pin # 15 16 17 18 19	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9						
Pin # 1 2 3 4 5 6	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	Pin # 15 16 17 18 19 20	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I	Name 37 /RB8 RB9						
Pin # 1 2 3 4 5 6 7	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	Pin # 15 16 17 18 19 20 21	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10	Name 37 /RB8 RB9 0						
Pin # 1 2 3 4 5 6 7 8	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss	Pin # 15 16 17 18 19 20 21 21 22	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0						
Pin # 1 2 3 4 5 6 7 8 9	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0						
Pin # 1 2 3 4 5 6 7 8 9 10	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I TED11/RB10 11 PMRD/RB13	Name 37 /RB8 RB9 0 3						
Pin # 1 2 3 4 5 6 7 8 9 10 11	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	Pin # 15 16 17 18 19 20 21 22 23 24 25	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/I CVREFOUT/AN10/C3IN	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10 11 IB/RPB14/V	Name 37 /RB8 RB9 0 3 /BUSON/S	SCK1/CTED5/RB14					
Pin # 1 2 3 4 5 6 7 8 9 10 11 12	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/f CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB11 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 5/PMCS1	SCK1/CTED5/RB14 1/RB15					
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VpD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC AVSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB13 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 6)/PMCS1	SCK1/CTED5/RB14 1/RB15					

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

		Pin Nu	mber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
USBID	11 ⁽³⁾	14(3)	15 ⁽³⁾	41 ⁽³⁾	I	ST	USB OTG ID detect
CTED1	27	2	33	19	I	ST	CTMU External Edge Input
CTED2	28	3	34	20	I	ST	
CTED3	13	16	17	43	I	ST	
CTED4	15	18	19	1	I	ST	
CTED5	22	25	28	14	I	ST	
CTED6	23	26	29	15	I	ST	
CTED7			20	5	I	ST	
CTED8				13	I	ST	7
CTED9	9	12	10	34	I	ST	
CTED10	14	17	18	44	I	ST	
CTED11	18	21	24	8	I	ST	7
CTED12	2	5	36	22	I	ST	
CTED13	3	6	1	23	I	ST	7
CTPLS	21	24	27	11	0	—	CTMU Pulse Output
PGED1	1	4	35	21	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	2	5	36	22	I	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	18	21	24	8	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	19	22	25	9	I	ST	Clock input pin for Programming/Debugging Communication Channel 2
PGED3	11 ⁽²⁾ 27 ⁽³⁾	14 ⁽²⁾ 2 ⁽³⁾	15 ⁽²⁾ 33 ⁽³⁾	41 ⁽²⁾ 19 ⁽³⁾	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 3
PGEC3	12 ⁽²⁾ 28 ⁽³⁾	15 ⁽²⁾ 3 ⁽³⁾	16 ⁽²⁾ 34 ⁽³⁾	42 ⁽²⁾ 20 ⁽³⁾	- 1	ST	Clock input pin for Programming/ Debugging Communication Channel 3
PGED4	—	—	3	12	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 4
PGEC4	—	—	4	13	I	ST	Clock input pin for Programming/ Debugging Communication Channel 4
Legend:	CMOS = CM	MOS compa	atible input	or output	•	Analog =	Analog input P = Power
:	ST = Schmi	tt Trigger in	put with CN	NOS levels		O = Outp	but I=Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer PPS = Peripheral Pin Select

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

— = N/A

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.9 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-5 and Figure 2-6.

FIGURE 2-6: AUDIO PLAYBACK APPLICATION

4.2 Bus Matrix Control Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

ess)		ø										Bits							
Virtual Addr (BF88_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	_		_	_	—	_		_	_	—	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	BINIXCON	15:0		_	_	_	_	-		—	_	BMXWSDRM	_	_	—	BI	MXARB<2:0>		0041
2010		31:16	_		_		_	_		_	_	_	_	_	—	_	_	_	0000
2010	DIVIADAPDA'	15:0		BMXDKPBA<15:0> 0000															
2020		31:16	_					_		—	_	—	—	_	—		_		0000
2020	BINIADODBA	15:0									BM	XDUDBA<15:0	>						0000
2030		31:16	—	_	_		_	—	_	—	—	—	—	—	—	—	—	-	0000
2000		15:0									BN	IXDUPBA<15:0>	>						0000
2040	BMXDRMS7	31:16									BM	XDRMS7<31.0	>						xxxx
2040	DIVINDI (IVIOZ	15:0																	xxxx
2050		31:16	—	—				—	_	—	—		_	_		BMXPUPBA	<19:16>		0000
2000		15:0									BN	IXPUPBA<15:0>	>						0000
2060	BMYDEMS7	31:16									BM								xxxx
2000	DWXTTWOZ	15:0									DIV	IXI 1 WOZ < 01.02							xxxx
2070	BMXBOOTS7	31:16									BW	XBOOTS7<31-0							0000
2070	DWIXDOUTSZ	15:0									DIVI	NDOUT32531.0	~						0C00

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

9.1 DMA Control Registers

TABLE 9-1: DMA GLOBAL REGISTER MAP

ess		0		Bits												6			
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000		31:16	_	-	_	—	—	—	—	_	_	_	—	_	_	—	—	_	0000
3000	DIVIACON	15:0	ON	—	—	SUSPEND	DMABUSY	_	—	_	_	_	—	_	—	—	—	—	0000
3010	DMASTAT	31:16	—	-	—	—	—	_	_	_	_	_	_	_	_	—	_	—	0000
3010	DIVIASTAT	15:0			_	_	_	_	_	_	_	_	_	_	RDWR	DI	MACH<2:0>	(2)	0000
3020		31:16									D-31.05								0000
3020	DIVIAADDIN	15:0								DIVIAADL	N<51.02								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

TABLE 9-2: DMA CRC REGISTER MAP

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCBCCON	31:16	—	—	BYTC)<1:0>	WBO	—	—	BITO	_	—	_	_	_	_	_	_	0000
3030	DCRCCON	15:0	_	_	_			PLEN<4:0>	•		CRCEN	CRCAPP	CRCTYP	—	_	C	RCCH<2:0	>	0000
2040		31:16									TA-21.05								0000
3040	DCRCDAIA	15:0		DCRCDATA<31:0>															
2050	DCBCVOB	31:16		0000															
3050	DUNUAUR	15:0			DCRCXOR<31:0>														

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0						
23:10	—	—	—	—	—	—	—	_
45.0	U-0	U-0						
15:8	—	—	—	—	—	—	—	—
	R/W-0	R/W-0						
7:0	BTSEE	BMYEE		BTOEE			CRC5EE ⁽¹⁾	DIDEE
	DIGLE	DIVIALL	DIVIALL	DIOLL	DINOLL	ONCIDEL	EOFEE ⁽²⁾	

REGISTER 10-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit 1 = BTSEF interrupt is enabled 0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled0 = BTOEF interrupt is disabled
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit
	1 = DFN8EF interrupt is enabled
	0 = DFN8EF interrupt is disabled

- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate the USBIF register, the UERRIE (U1IE<1>) bit must be set.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—	—	—	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	-	—	—	—	—	—
7.0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP.	T<3:0>		DIR	PPBI	_	_

Legend:

· J· ·						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the Buffer Descriptor Table, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last Buffer Descriptor Direction Indicator bit
 - 1 = Last transaction was a transmit (TX) transfer
 - 0 = Last transaction was a receive (RX) transfer
- bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = The last transaction was to the ODD Buffer Descriptor bank
 - 0 = The last transaction was to the EVEN Buffer Descriptor bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF (U1IR<3>) bit is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	—	_	—	—	—	—
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	_	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	_	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—	_	_	[pin name]R<3:0>			

REGISTER 11-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [*pin name*]R<3:0>: Peripheral Pin Select Input bits Where [*pin name*] refers to the pins that are used to configure peripheral input mapping. See Table 11-1 for input pin selection values.

Note: Register values can only be changed if the Configuration bit, IOLOCK (CFGCON<13>), = 0.

REGISTER 11-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	_		_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	_	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	—	_	—	_	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0						RPnR	<3:0>	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 **RPnR<3:0>:** Peripheral Pin Select Output bits See Table 11-2 for output pin selection values.

Note: Register values can only be changed if the Configuration bit, IOLOCK (CFGCON<13>), = 0.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	_	_	—	AUDMONO ^(1,2)	—	AUDMOD)<1:0> ^(1,2)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 **FRMERREN:** Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
 - 1 = Transmit underrun generates error events
 - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
 0 = A ROV is a critical error that stops SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
- 1 = Audio protocol enabled
 - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit^(1,2)
 - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
 - 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit^(1,2)
 - 11 = PCM/DSP mode
 - 10 = Right-Justified mode
 - 01 = Left-Justified mode
 - $00 = I^2S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - 2: This bit is only valid for AUDEN = 1.

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 Трв
 - 10 = Wait of 3 Трв
 - 01 = Wait of 2 TPB
 - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 Трв
- 10 = Wait of 2 TPB
- 01 = Wait of 1 Трв
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD EDG1POL EDG1SEL<3:0>				EDG2STAT	EDG1STAT		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	—		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0			ITRIM	1<5:0>			IRNG	<1:0>

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31 EDG1MOD: Edge1 Edge Sampling Select bit
 - 1 = Input is edge-sensitive
 - 0 = Input is level-sensitive
- bit 30 EDG1POL: Edge 1 Polarity Select bit
 - 1 = Edge1 programmed for a positive edge response
 - 0 = Edge1 programmed for a negative edge response
- bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits
 - 1111 = C3OUT pin is selected
 - 1110 = C2OUT pin is selected
 - 1101 = C1OUT pin is selected
 - 1100 = IC3 Capture Event is selected
 - 1011 = IC2 Capture Event is selected
 - 1010 = IC1 Capture Event is selected
 - 1001 = CTED8 pin is selected
 - 1000 = CTED7 pin is selected
 - 0111 = CTED6 pin is selected
 - 0110 = CTED5 pin is selected
 - 0101 = CTED4 pin is selected
 - 0100 = CTED3 pin is selected
 - 0011 = CTED1 pin is selected
 - 0010 = CTED2 pin is selected
 - 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge2 Status bit

Indicates the status of Edge2 and can be written to control edge source

- 1 = Edge2 has occurred
- 0 = Edge2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless Operatin	d Operating C otherwise stat g temperature	onditions: ted) -40°C ≤ ⁻ -40°C ≤ ⁻	2.3V to 3 TA ≤ +85° TA ≤ +105	3.6V C for Industrial i°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time		_	_	ns	See parameter DO32
OC11	TccR	OCx Output Rise Time	_	—	_	ns	See parameter DO31

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 30-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			Standard (unless of Operating	d Operating (otherwise sta g temperature	Condition: ated) e -40°C ≤ -40°C ≤	s: 2.3V to ≤ Ta ≤ +85 ≤ Ta ≤ +10	3.6V °C for Industrial 5°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM1	Tlat	PMALL/PMALH Pulse Width	_	1 Трв		—	_
PM2	Tadsu	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	2 Трв	_	—	_
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	_	_
PM4	Tahold	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_
PM5	Trd	PMRD Pulse Width	_	1 Трв	_		—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	_	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	_	ns	

TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard (unless Operating	d Operati otherwis g tempera	ing Condi e stated) ature -40 -40	i tions (s 0°C ≤ T/ 0°C ≤ TA	ee Note 3):2.3V to 3.6V A ≤ +85°C for Industrial ≤ +105°C for V-temp
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				
CTMU CUR	RENT SOUR	CE					
CTMUI1	IOUT1	Base Range ⁽¹⁾	_	0.55		μA	CTMUCON<9:8> = 01
CTMUI2	IOUT2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUCON<9:8> = 10
CTMUI3	IOUT3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550	_	μA	CTMUCON<9:8> = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)		0.598	—	V	TA = +25°C, CTMUCON<9:8> = 01
				0.658	—	V	TA = +25°C, CTMUCON<9:8> = 10
			_	0.721	_	V	TA = +25°C, CTMUCON<9:8> = 11
CTMUFV2	VFVR	VR Temperature Diode Rate of		-1.92		mV/ºC	CTMUCON<9:8> = 01
		Change ^(1,2)	—	-1.74	_	mV/ºC	CTMUCON<9:8> = 10
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11

Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

33.1 Package Marking Information (Continued)

44-Lead VTLA

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((a))
		can be found on the outer packaging for this package.
Note:	If the full N line, thus	Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820