Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 40MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 16K x 8 | | /oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 10x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-VQFN Exposed Pad | | Supplier Device Package | 28-QFN (6x6) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064bt-v-ml | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH) REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | U-0 | 31:24 | _ | _ | _ | | - | _ | - | _ | | 23:16 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | | 15:8 | ON ⁽¹⁾ | _ | _ | SUSPEND | DMABUSY | _ | _ | _ | | 7.0 | U-0 | 7:0 | _ | _ | _ | _ | _ | _ | _ | _ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** DMA On bit⁽¹⁾ 1 = DMA module is enabled0 = DMA module is disabled bit 14-13 **Unimplemented:** Read as '0' bit 12 **SUSPEND:** DMA Suspend bit 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus 0 = DMA operates normally bit 11 DMABUSY: DMA Module Busy bit 1 = DMA module is active 0 = DMA module is disabled and not actively transferring data bit 10-0 Unimplemented: Read as '0' **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. # DS60001168J-page 105 ### **USB Control Registers** ### TABLE 10-1: USB REGISTER MAP | ess | | | | | | | | | | | Bit | s | | | | | | | | |-----------------------------|---------------------------------|---------------|-------|-------|-------|-------|----------|-------|------|------|------------------------|---------------|-------------------|---------------|---------------|---------------|-------------|--------------------|------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5040 | U1OTGIR ⁽²⁾ | 31:16
15:0 | _ | _ | | _ | _ | | _ | _ | —
IDIF | —
T1MSECIF | -
LSTATEIF | —
ACTVIF | —
SESVDIF | —
SESENDIF | _ | -
VBUSVDIF | 0000 | | 5050 | U10TGIE | 31:16
15:0 | _ | _ | _ | _ | _ | _ | _ | _ | —
IDIE | —
T1MSECIE | —
LSTATEIE | —
ACTVIE | —
SESVDIE | —
SESENDIE | _ | —
VBUSVDIE | 0000 | | 5060 | U1OTGSTAT ⁽³⁾ | 31:16 | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | 0000 | | 5070 | | 15:0
31:16 | _ | _ | | _ | | _ | | | ID
— | | LSTATE
— | | SESVD — | SESEND — | _ | VBUSVD — | 0000 | | | | 15:0
31:16 | | | | | _ | | | _ | DPPULUP
— | DMPULUP
— | DPPULDWN
— | DMPULDWN
— | VBUSON — | OTGEN — | VBUSCHG | VBUSDIS — | 0000 | | 5080 | U1PWRC | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | UACTPND ⁽⁴⁾ | _ | _ | USLPGRD | USBBUSY | _ | USUSPEND | USBPWR | 0000 | | 5200 | U1IR ⁽²⁾ | 31:16
15:0 | | _ | _ | _ | | _ | _ | _ | STALLIF | —
ATTACHIF | RESUMEIF | IDLEIF | TRNIF | SOFIF | UERRIF | URSTIF
DETACHIF | 0000 | | | | 31:16 | _ | _ | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5210 | U1IE | 15:0 | _ | _ | - | _ | - | _ | - | _ | STALLIE | ATTACHIE | RESUMEIE | IDLEIE | TRNIE | SOFIE | UERRIE | URSTIE DETACHIE | 0000 | | 5220 | U1EIR ⁽²⁾ | 31:16 | _ | _ | | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | —
CRC5EF | _ | 0000 | | 5220 | | 15:0 | _ | _ | | _ | _ | _ | - | _ | BTSEF | BMXEF | DMAEF | BTOEF | DFN8EF | CRC16EF | EOFEF | PIDEF | 0000 | | 5230 | U1EIE | 31:16 | _ | | _ | _ | | | | | | | _ | _ | _ | _ | CRC5EE | _ | 0000 | | | | 15:0 | _ | _ | | _ | _ | _ | | _ | BTSEE | BMXEE | DMAEE | BTOEE | DFN8EE | CRC16EE | EOFEE | PIDEE | 0000 | | 5240 | U1STAT ⁽³⁾ | 31:16
15:0 | _ | _ | _ | _ | | _ | _ | _ | _ | —
ENDF | T<3:0> | _ | DIR | PPBI | _ | _ | 0000 | | | | 31:16 | _ | _ | _ | _ | | _ | _ | _ | _ | _ | —
DICTRIC | _ | _ | _ | _ | _ | 0000 | | 5250 | U1CON | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | JSTATE | SE0 | PKTDIS
TOKBUSY | USBRST | HOSTEN | RESUME | PPBRST | USBEN
SOFEN | 0000 | | 5260 | U1ADDR | 31:16
15:0 | | | | | | | | | —
LSPDEN | _ | _ | | —
VADDR<6: | <u> </u> | _ | _ | 0000 | | 5270 | U1BDTP1 | 31:16 | _ | _ | | _ | | | | _ | — | _ | _ | _ | _ | _ | _ | _ | 0000 | | , | ·· | 15:0 | — D | _ | _ | _ | <u> </u> | | _ | | | | BD | TPTRL<15:9 | • | | | _ | 0000 | x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. ^{2:} This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. Reset value for this bit is undefined. ### REGISTER 10-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | - | _ | - | _ | _ | 1 | - | _ | | 23:16 | U-0 | 23.10 | 1 | - | 1 | | 1 | 1 | 1 | _ | | 15:8 | U-0 | 15.6 | _ | _ | _ | _ | _ | _ | _ | _ | | 7:0 | U-0 | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | | 7:0 | _ | _ | _ | _ | _ | | FRMH<2:0> | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-3 Unimplemented: Read as '0' bit 2-0 FRMH<2:0>: The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received. ### **REGISTER 10-15: U1TOK: USB TOKEN REGISTER** | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | |--------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--| | 31:24 | U-0 | | | 31.24 | - | _ | - | _ | - | _ | - | _ | | | | 23:16 | U-0 | | | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | | | 15:8 | U-0 | | | 15.6 | - | _ | - | _ | - | _ | - | - | | | | 7:0 | R/W-0 | | | 7:0 | | PID< | 3:0> ⁽¹⁾ | | EP<3:0> | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared $(0)^2$ = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-4 PID<3:0>: Token Type Indicator bits⁽¹⁾ 1101 = SETUP (TX) token type transaction 1001 = IN (RX) token type transaction 0001 = OUT (TX) token type transaction Note: All other values are reserved and must not be used. bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint. Note 1: All other values are reserved and must not be used. ### 11.4 Ports Control Registers ### TABLE 11-3: PORTA REGISTER MAP | ess | | | | | | | | | | Bits | 3 | | | | | | | | " | |-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|--------------------------|-------------------------|-------------------------|-------------------------|------|------|----------|----------|----------|----------|----------|------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6000 | ANSELA | 31:16 | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | _ | _ | _ | | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | | _ | _ | _ | _ | | | _ | _ | _ | ANSA1 | ANSA0 | 0003 | | 6010 | TRISA | 31:16 | _ | _ | _ | _ | | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 00.0 | 1111071 | 15:0 | _ | _ | _ | _ | _ | TRISA10 ⁽²⁾ | TRISA9 ⁽²⁾ | TRISA8 ⁽²⁾ | TRISA7 ⁽²⁾ | _ | _ | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 | 079F | | 6020 | PORTA | 31:16 | _ | _ | _ | _ | _ | | | | _ | _ | _ | | | | | | 0000 | | 0020 | TOITIN | 15:0 | _ | _ | _ | _ | | RA10 ⁽²⁾ | RA9 ⁽²⁾ | RA8 ⁽²⁾ | RA7 ⁽²⁾ | _ | _ | RA4 | RA3 | RA2 | RA1 | RA0 | xxxx | | 6030 | LATA | 31:16 | _ | _ | _ | _ | _ | - | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0030 | LAIA | 15:0 | _ | _ | _ | _ | - | LATA10 ⁽²⁾ | LATA9 ⁽²⁾ | LATA8 ⁽²⁾ | LATA7 ⁽²⁾ | _ | _ | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 | xxxx | | 6040 | ODCA | 31:16 | _ | _ | _ | | | 1 | _ | _ | | | | - | - | _ | - | _ | 0000 | | 6040 | ODCA | 15:0 | _ | _ | _ | | | ODCA10 ⁽²⁾ | ODCA9 ⁽²⁾ | ODCA8 ⁽²⁾ | ODCA7 ⁽²⁾ | | | ODCA4 | ODCA3 | ODCA2 | ODCA1 | ODCA0 | 0000 | | 6050 | CNPUA | 31:16 | _ | _ | _ | | | 1 | _ | _ | | | | - | - | _ | - | _ | 0000 | | 6050 | CNPUA | 15:0 | _ | _ | _ | 1 | 1 | CNPUA10 ⁽²⁾ | CNPUA9 ⁽²⁾ | CNPUA8 ⁽²⁾ | CNPUA7 ⁽²⁾ | _ | _ | CNPUA4 | CNPUA3 | CNPUA2 | CNPUA1 | CNPUA0 | 0000 | | 0000 | ONDDA | 31:16 | | | _ | 1 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6060 | CNPDA | 15:0 | _ | _ | _ | _ | _ | CNPDA10 ⁽²⁾ | CNPDA9 ⁽²⁾ | CNPDA8 ⁽²⁾ | CNPDA7 ⁽²⁾ | _ | _ | CNPDA4 | CNPDA3 | CNPDA2 | CNPDA1 | CNPDA0 | 0000 | | 0070 | ONIOONIA | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6070 | CNCONA | 15:0 | ON | _ | SIDL | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | 0115114 | 31:16 | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6080 | CNENA | 15:0 | _ | _ | _ | _ | _ | CNIEA10 ⁽²⁾ | CNIEA9 ⁽²⁾ | CNIEA8 ⁽²⁾ | CNIEA7 ⁽²⁾ | _ | _ | CNIEA4 | CNIEA3 | CNIEA2 | CNIEA1 | CNIEA0 | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6090 | CNSTATA | 15:0 | _ | _ | _ | _ | _ | CNSTATA10 ⁽²⁾ | CNSTATA9 ⁽²⁾ | CNSTATA8 ⁽²⁾ | CNSTATA7 ⁽²⁾ | _ | _ | CNSTATA4 | CNSTATA3 | CNSTATA2 | CNSTATA1 | CNSTATA0 | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. PIC32MX1XX/2XX 28/36/44-PIN FAMILY 2: This bit is only available on 44-pin devices. TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP | sss | | | | | | | | | | Ві | ts | | | | | | | | | |-----------------------------|----------------------|---------------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-----------|----------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FB00 | RPA0R | 31:16
15:0 | _ | | _ | | | | _ | | | _ | _ | _ | - | —
RPA0 | - | _ | 0000 | | | | 31:16 | | | | | | | | | | | | _ | _ | _ | _ | _ | 0000 | | FB04 | RPA1R | 15:0 | _ | _ | _ | | _ | | | _ | | _ | _ | _ | | RPA1 | <3:0> | | 0000 | | | | 31:16 | _ | | _ | | _ | | _ | _ | | _ | _ | _ | | _ | _ | _ | 0000 | | FB08 | RPA2R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA2 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | FB0C | RPA3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA3 | <3:0> | | 0000 | | ED40 | RPA4R | 31:16 | _ | 1 | _ | | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB10 | RPA4R | 15:0 | _ | | _ | _ | _ | | _ | _ | | _ | _ | _ | | RPA4 | <3:0> | | 0000 | | FB20 | RPA8R ⁽¹⁾ | 31:16 | _ | 1 | _ | - | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | 1 020 | IN AOIN. | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA8 | <3:0> | | 0000 | | FB24 | RPA9R ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | - | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA9 | <3:0> | | 0000 | | FB2C | RPB0R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | 0000 | | | | 15:0 | | | _ | | | | | | | | | | | RPB0 | | | 0000 | | FB30 | RPB1R | 31:16
15:0 | | | _ | | | | | | | | | | | RPB1 | -2:0> | _ | 0000 | | | | 31:16 | | | _ | | | | | | | _ | _ | _ | _ | — KFB1 | <u> </u> | _ | 0000 | | FB34 | RPB2R | 15:0 | _ | | _ | | | | | | | _ | _ | | | RPB2 | | _ | 0000 | | | | 31:16 | _ | | _ | | _ | | | _ | | _ | _ | _ | _ | — | _ | l _ | 0000 | | FB38 | RPB3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB3 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB3C | RPB4R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB4 | <3:0> | | 0000 | | ED 40 | DDDCD | 31:16 | _ | 1 | _ | | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB40 | RPB5R | 15:0 | _ | | _ | | _ | - | _ | _ | | _ | _ | _ | | RPB5 | <3:0> | | 0000 | | FB44 | RPB6R ⁽²⁾ | 31:16 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1 044 | INF DOIN, 7 | 15:0 | _ | 1 | _ | 1 | - | - | - | - | 1 | _ | _ | _ | | RPB6 | <3:0> | | 0000 | | FB48 | RPB7R | 31:16 | _ | | _ | | _ | | _ | _ | | _ | | | _ | _ | _ | _ | 0000 | | . 2 .0 | 2 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | RPB7 | <3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. This register is only available on 44-pin devices. Note 1: This register is only available on PIC32MX1XX devices. 2: This register is only available on 36-pin and 44-pin devices. ### REGISTER 11-3: CNCONx: CHANGE NOTICE CONTROL FOR PORTX REGISTER (x = A, B, C) | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | - | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | | 15:8 | ON | _ | SIDL | _ | _ | _ | _ | _ | | 7.0 | U-0 | 7:0 | _ | _ | _ | _ | _ | _ | _ | _ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 ON: Change Notice (CN) Control ON bit 1 = CN is enabled0 = CN is disabled bit 14 **Unimplemented:** Read as '0' bit 13 **SIDL:** Stop in Idle Control bit **SIDL:** Stop in Idle Control bit 1 = Idle mode halts CN operation 0 = Idle does not affect CN operation bit 12-0 Unimplemented: Read as '0' ### 18.1 I2C Control Registers ### TABLE 18-1: I2C1 AND I2C2 REGISTER MAP | ess | | | | | | | | | | Bi | ts | | | | | | | | | |-----------------------------|---------------------------------|---------------|---------|--------|-------|--------|--------|-------|--------|------------------------------|----------|-------------|------------|--------------|-----------|------|------|------|------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5000 | I2C1CON | 31:16 | | _ | _ | _ | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | 0000 | | | | 15:0 | ON | | SIDL | SCLREL | STRICT | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | 5010 | I2C1STAT | 31:16 | | | | _ | | _ | - | - | | - | | _ | _ | - | _ | | 0000 | | | | | ACKSTAT | TRSTAT | | _ | | BCL | GCSTAT | ADD10 | IWCOL | I2COV | D_A | Р | S | R_W | RBF | TBF | 0000 | | 5020 | I2C1ADD | 31:16 | _ | | | _ | | | _ | _ | _ | _ | <u> </u> | <u> </u> | _ | _ | _ | _ | 0000 | | | | 15:0 | _ | | | _ | | | | | | | Address | Register | | | | | 0000 | | 5030 | I2C1MSK | 31:16
15:0 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | | —
!-D!-t | _ | _ | _ | _ | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | | | | | Address Ma | ask Register | | | | | 0000 | | 5040 | I2C1BRG | 15:0 | _ | | _ | _ | _ | _ | _ | | | d Bata Car | orator Boa | inter | | _ | _ | _ | 0000 | | | | 31:16 | _ | _ | | _ | | | _ | _ | Бац | id Rate Ger | erator Reg | Islei | | | | _ | 0000 | | 5050 | I2C1TRN | 15:0 | _ | | | | | _ | | | | _ | | Transmit | Pogister. | _ | _ | _ | 0000 | | | | 31:16 | _ | | | _ | | | _ | | _ | _ | _ | | Register | _ | _ | _ | 0000 | | 5060 | I2C1RCV | 15:0 | _ | | | | | | | | <u> </u> | _ | | Receive | Pegister | | | | 0000 | | | | 31:16 | | | | | | | | | | _ | _ | | — | _ | _ | _ | 0000 | | 5100 | I2C2CON | 15:0 | ON | | SIDL | SCLREL | STRICT | A10M | DISSLW | SMEN | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 1000 | | | | 31:16 | | | — | | _ | _ | | _ | _ | — | _ | | _ | _ | _ | _ | 0000 | | 5110 | I2C2STAT | | ACKSTAT | TRSTAT | | _ | | BCL | GCSTAT | ADD10 | IWCOL | I2COV | DΑ | Р | S | R W | RBF | TBF | 0000 | | | | 31:16 | | _ | _ | _ | _ | | _ | _ | _ | _ | | _ | _ | | _ | _ | 0000 | | 5120 | I2C2ADD | 15:0 | _ | | | _ | | _ | | | | | Address | Register | | | | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5130 | I2C2MSK | 15:0 | _ | _ | _ | _ | | _ | | | | | Address Ma | sk Register | | | | | 0000 | | 5440 | 1000000 | 31:16 | _ | 1 | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5140 | I2C2BRG | 15:0 | _ | | _ | _ | | • | • | Baud Rate Generator Register | | | | | | 0000 | | | | | 5150 | I2C2TRN | 31:16 | _ | | | _ | ı | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 5 150 | 12021KN | 15:0 | _ | | | _ | I | | | — Transmit Register | | | | | | 0000 | | | | | 5160 | I2C2RCV | 31:16 | _ | _ | _ | _ | - | _ | _ | _ | | _ | _ | _ | | | _ | _ | 0000 | | 3 100 | IZUZRUV | 15:0 | _ | _ | _ | _ | _ | _ | _ | | | | | Receive | Register | | | | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module. FIGURE 19-2: UART RECEPTION FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA) ### REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED) - bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits(1) - 11 = Wait of 4 TPB - 10 = Wait of 3 TPB - 01 = Wait of 2 TPB - 00 = Wait of 1 TPB (default) ### For Read operations: - 11 = Wait of 3 TPB - 10 = Wait of 2 TPB - 01 = Wait of 1 TPB - 00 = Wait of 0 TPB (default) - Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 ΤΡΒCLK cycle for a write operation; WAITB = 1 ΤΡΒCLK cycle, WAITE = 0 ΤΡΒCLK cycles for a read operation. - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1. ### REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | | | |--------------|-------------------|---|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--| | 04.04 | U-0 | | | | | | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | | 00.40 | U-0 | | | | | | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | | | U-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | | | | | | 15:8 | _ | CS1 ⁽¹⁾
ADDR14 ⁽²⁾ | _ | _ | _ | | ADDR<10:8> | | | | | | | | 7:0 | R/W-0 | | | | | | | | | | ADDR: | <7:0> | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as '0' bit 14 CS1: Chip Select 1 bit⁽¹⁾ 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive bit 14 ADDR<14>: Destination Address bit 14⁽²⁾ bit 13-11 Unimplemented: Read as '0' bit 10-0 ADDR<10:0>: Destination Address bits **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10. **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01. ### REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------| | 24.24 | U-0 | 31:24 | | _ | _ | _ | _ | | _ | _ | | 00.40 | U-0 | U-0 U-0 | | U-0 | U-0 | U-0 | U-0 | U-0 | | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDL | _ | _ | F | ORM<2:0> | | | 7.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0, HSC | R/C-0, HSC | | 7:0 | | SSRC<2:0> | | CLRASAM | _ | ASAM | SAMP ⁽²⁾ | DONE ⁽³⁾ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** ADC Operating Mode bit⁽¹⁾ 1 = ADC module is operating 0 = ADC module is not operating bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when the device enters Idle mode bit 12-11 **Unimplemented:** Read as '0' bit 10-8 FORM<2:0>: Data Output Format bits 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000) 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd) 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000) 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000) 000 =Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits 111 = Internal counter ends sampling and starts conversion (auto convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = CTMU ends sampling and starts conversion 010 = Timer 3 period match ends sampling and starts conversion 001 = Active transition on INTO pin ends sampling and starts conversion 000 = Clearing SAMP bit ends sampling and starts conversion - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion. - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion. ### REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED) - bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated) - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated. - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence - bit 3 Unimplemented: Read as '0' - bit 2 **ASAM:** ADC Sample Auto-Start bit - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set. - 0 = Sampling begins when SAMP bit is set - bit 1 SAMP: ADC Sample Enable bit⁽²⁾ - 1 = The ADC sample and hold amplifier is sampling - 0 = The ADC sample/hold amplifier is holding - When ASAM = 0, writing '1' to this bit starts sampling. When SSRC = 000, writing '0' to this bit will end sampling and start conversion. - bit 0 **DONE**: Analog-to-Digital Conversion Status bit⁽³⁾ - 1 = Analog-to-digital conversion is done - 0 = Analog-to-digital conversion is not done or has not started Clearing this bit will not affect any operation in progress. - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion. - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion. ### REGISTER 23-2: CMSTAT: COMPARATOR STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | | _ | - | _ | 1 | - | _ | _ | | 23:16 | U-0 | 23.10 | - | _ | _ | _ | | | _ | _ | | 15:8 | U-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | | 15.6 | _ | _ | SIDL | _ | | _ | _ | _ | | 7:0 | U-0 | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | | 7.0 | _ | _ | _ | _ | | C3OUT | C2OUT | C1OUT | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Control bit 1 = All Comparator modules are disabled when the device enters Idle mode 0 = All Comparator modules continue to operate when the device enters Idle mode bit 12-3 **Unimplemented:** Read as '0' bit 2 C3OUT: Comparator Output bit 1 = Output of Comparator 3 is a '1' 0 = Output of Comparator 3 is a '0' bit 1 C2OUT: Comparator Output bit 1 = Output of Comparator 2 is a '1' 0 = Output of Comparator 2 is a '0' bit 0 C10UT: Comparator Output bit 1 = Output of Comparator 1 is a '1' 0 = Output of Comparator 1 is a '0' ### **COMPARATOR VOLTAGE** 24.0 REFERENCE (CVREF) Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output. The comparator voltage reference has the following features: - · High and low range selection - · Sixteen output levels available for each range - · Internally connected to comparators to conserve device pins - Output can be connected to a pin A block diagram of the module is shown in Figure 24-1. **FIGURE 24-1:** COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS | DC CHARACTERISTICS | | | | | | | | | | |--------------------|--------|---|--|---|---------------------|----|--|--|--| | Param.
No. | Symbol | Characteristics | Min. Typ. ⁽¹⁾ Max. Units Conditions | | | | | | | | DI60a | licl | Input Low Injection
Current | 0 | _ | ₋₅ (2,5) | mA | This parameter applies to all pins, with the exception of the power pins. | | | | DI60b | lich | Input High Injection
Current | 0 | _ | +5(3,4,5) | mA | This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins. | | | | DI60c | ∑lict | Total Input Injection
Current (sum of all I/O
and Control pins) | ₋₂₀ (6) | | +20(6) | mA | Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT) | | | - **Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 2: VIL source < (Vss 0.3). Characterized but not tested. - 3: VIH source > (VDD + 0.3) for non-5V tolerant pins only. - **4:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current. - 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., ViH Source > (VDD + 0.3) or ViL source < (Vss 0.3)). - 6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If **Note 2**, IICL = (((Vss 0.3) VIL source) / Rs). If **Note 3**, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0. ### TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS | DC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | |--------------------|-----------------------------|-----------------------------|--|------|------|-------|------------------------------| | Param. | aram. Symbol Characteristic | | | Тур. | Max. | Units | Conditions | | DO10 | VoL | Output Low Voltage I/O Pins | _ | _ | 0.4 | V | IOL ≤ 10 mA, VDD = 3.3V | | | Vон | Output High Voltage | 1.5 ⁽¹⁾ | | _ | V | IOH ≥ -14 mA, VDD = 3.3V | | DO20 | | I/O Pins | 2.0 ⁽¹⁾ | | _ | | IOH ≥ -12 mA, VDD = 3.3V | | DO20 | | | 2.4 | _ | _ | V | IOH ≥ -10 mA, VDD = 3.3V | | | | | 3.0(1) | _ | _ | | IOH \geq -7 mA, VDD = 3.3V | Note 1: Parameters are characterized, but not tested. ### TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR | TABLE 30-11. ELECTRICAL CHARACTERISTICS. BOX | | | | | | | | | | |--|--------|--|--|---------|------|-------|------------|--|--| | DC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | | Param.
No. | Symbol | Characteristics | Min. ⁽¹⁾ | Typical | Max. | Units | Conditions | | | | BO10 | VBOR | BOR Event on VDD transition high-to-low ⁽²⁾ | 2.0 | _ | 2.3 | V | _ | | | Note 1: Parameters are for design guidance only and are not tested in manufacturing. ^{2:} Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. **TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS** | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +105^{\circ}\text{C}$ for V-temp | | | | | | | |--------------------|---------------|--|--|------------------------|-------------|------------|---|--|--| | Param.
No. | Symbol | Characteristics | Min. | Typical ⁽¹⁾ | Max. | Units | Conditions | | | | OS10 | Fosc | External CLKI Frequency
(External clocks allowed only
in EC and ECPLL modes) | DC
4 | _ | 40
40 | MHz
MHz | EC (Note 4)
ECPLL (Note 3) | | | | OS11 | | Oscillator Crystal Frequency | 3 | _ | 10 | MHz | XT (Note 4) | | | | OS12 | | | 4 | _ | 10 | MHz | XTPLL
(Notes 3,4) | | | | OS13 | 1 | | 10 | _ | 25 | MHz | HS (Note 5) | | | | OS14 | | | 10 | _ | 25 | MHz | HSPLL
(Notes 3,4) | | | | OS15 | | | 32 | 32.768 | 100 | kHz | Sosc (Note 4) | | | | OS20 | Tosc | Tosc = 1/Fosc = Tcy (Note 2) | _ | _ | _ | _ | See parameter
OS10 for Fosc
value | | | | OS30 | TosL,
TosH | External Clock In (OSC1)
High or Low Time | 0.45 x Tosc | _ | _ | ns | EC (Note 4) | | | | OS31 | TosR,
TosF | External Clock In (OSC1) Rise or Fall Time | _ | _ | 0.05 x Tosc | ns | EC (Note 4) | | | | OS40 | Tost | Oscillator Start-up Timer Period
(Only applies to HS, HSPLL,
XT, XTPLL and Sosc Clock
Oscillator modes) | _ | 1024 | _ | Tosc | (Note 4) | | | | OS41 | TFSCM | Primary Clock Fail Safe
Time-out Period | _ | 2 | _ | ms | (Note 4) | | | | OS42 | Gм | External Oscillator
Transconductance (Primary
Oscillator only) | _ | 12 | _ | mA/V | VDD = 3.3V,
TA = +25°C
(Note 4) | | | - Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested. - 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. - 3: PLL input requirements: $4 \text{ MHz} \le \text{FPLLIN} \le 5 \text{ MHz}$ (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing. - 4: This parameter is characterized, but not tested in manufacturing. ### **TABLE 30-34: ADC MODULE SPECIFICATIONS** | | AC CHAR | RACTERISTICS | Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | | |---------------|------------|--|---|-------------|----------------------------------|----------|---|--|--|--| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | | | | Device | Supply | | | | | | | | | | | AD01 | AVDD | Module VDD Supply | Greater of
VDD – 0.3
or 2.5 | ĺ | Lesser of
VDD + 0.3 or
3.6 | V | _ | | | | | AD02 | AVss | Module Vss Supply | Vss | | AVDD | V | (Note 1) | | | | | Referen | ce Inputs | | | | | | | | | | | AD05
AD05a | VREFH | Reference Voltage High | AVss + 2.0
2.5 | | AVDD
3.6 | V
V | (Note 1)
VREFH = AVDD (Note 3) | | | | | AD06 | VREFL | Reference Voltage Low | AVss | | VREFH - 2.0 | V | (Note 1) | | | | | AD07 | VREF | Absolute Reference
Voltage (VREFH – VREFL) | 2.0 | 1 | AVDD | V | (Note 3) | | | | | AD08
AD08a | IREF | Current Drain | | 250
— | 400
3 | μA
μA | ADC operating
ADC off | | | | | Analog | Input | | | | | | | | | | | AD12 | VINH-VINL | Full-Scale Input Span | VREFL | _ | VREFH | V | _ | | | | | AD13 | VINL | Absolute VINL Input Voltage | AVss - 0.3 | _ | AVDD/2 | V | _ | | | | | AD14 | Vin | Absolute Input Voltage | AVss - 0.3 | _ | AVDD + 0.3 | V | _ | | | | | AD15 | _ | Leakage Current | _ | ±0.001 | ±0.610 | μA | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = $3.3V$
Source Impedance = $10 \text{ k}\Omega$ | | | | | AD17 | Rin | Recommended
Impedance of Analog
Voltage Source | _ | _ | 5k | Ω | (Note 1) | | | | | ADC Ac | curacy – N | leasurements with Exte | rnal VREF+/V | REF- | | | | | | | | AD20c | Nr | Resolution | | 10 data bit | s | bits | _ | | | | | AD21c | INL | Integral Non-linearity | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V | | | | | AD22c | DNL | Differential Non-linearity | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
(Note 2) | | | | | AD23c | GERR | Gain Error | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V | | | | | AD24c | EOFF | Offset Error | > -1 | _ | < 1 | Lsb | VINL = AVSS = 0V,
AVDD = 3.3V | | | | | AD25c | _ | Monotonicity | _ | _ | _ | _ | Guaranteed | | | | - **Note 1:** These parameters are not characterized or tested in manufacturing. - 2: With no missing codes. - **3:** These parameters are characterized, but not tested in manufacturing. - 4: Characterized with a 1 kHz sine wave. - **5:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. # 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **DETAIL A** | | MILLIMETERS | | | | | | |-------------------------|-------------|----------|------|-------|--|--| | Dimension | Limits | MIN | NOM | MAX | | | | Number of Pins | Ν | | 44 | | | | | Number of Pins per Side | ND | 12 | | | | | | Number of Pins per Side | NE | | 10 | | | | | Pitch | е | 0.50 BSC | | | | | | Overall Height | Α | 0.80 | 0.90 | 1.00 | | | | Standoff | A1 | 0.025 | - | 0.075 | | | | Overall Width | Е | 6.00 BSC | | | | | | Exposed Pad Width | E2 | 4.40 | 4.55 | 4.70 | | | | Overall Length | D | 6.00 BSC | | | | | | Exposed Pad Length | D2 | 4.40 | 4.55 | 4.70 | | | | Contact Width | b | 0.20 | 0.25 | 0.30 | | | | Contact Length | L | 0.20 | 0.25 | 0.30 | | | | Contact-to-Exposed Pad | K | 0.20 | - | - | | | ### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-157C Sheet 2 of 2