

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064c-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—		—	—
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16	_	—	_	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	-	—	_		—
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
7:0	_	BMX WSDRM	_	_	_	E	3MXARB<2:0	>

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

5		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-21 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 20	BMXERRIXI: Enable Bus Error from IXI bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18	BMXERRDMA: Bus Error from DMA bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17	BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16	BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7	Unimplemented: Read as '0'
bit 6	BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
	 1 = Data RAM accesses from CPU have one wait state for address setup 0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3	Unimplemented: Read as '0'
bit 2-0	BMXARB<2:0>: Bus Matrix Arbitration Mode bits
	111 = Reserved (using these Configuration modes will produce undefined behavior)
	•
	•
	011 = Reserved (using these Configuration modes will produce undefined behavior)010 = Arbitration Mode 2
	001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—	—	_	_	_	_	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	-	_			—	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	CHSPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	CHSPTR<7:0>								

REGISTER 9-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 9-15: DCHxDPTR: DMA CHANNEL 'x' DESTINATION POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24			_	_	—		—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10			_	_	—		—	—	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8	CHDPTR<15:8>								
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0				CHDPTF	R<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
-----------	----------------------------

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet rejected due to CRC5 error
 - 0 = Token packet accepted
 - EOFEF: EOF Error Flag bit^(3,5)
 - 1 = An EOF error condition was detected
 - 0 = No EOF error condition was detected
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check failed
 - 0 = PID check passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	_	—	—		_	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	-	—	_	_	_	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0	—	—	—	-	—	_	_	_	
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	JSTATE	ISTATE SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾	
	JUNATE	320	TOKBUSY ^(1,5)					SOFEN ⁽⁵⁾	

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = No JSTATE was detected on the
- bit 6 **SE0:** Live Single-Ended Zero flag bit 1 = Single-Ended Zero was detected on the USB
 - 0 = No Single-Ended Zero was detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing is disabled (set upon SETUP token received)
 - 0 = Token and packet processing is enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token is being executed by the USB module
 - 0 = No token is being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated
- bit 3 HOSTEN: Host Mode Enable bit⁽²⁾
 - 1 = USB host capability is enabled
 - 0 = USB host capability is disabled
- bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_		_	—		-	-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_		_	—		-	-
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		_		_	—		-	-
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 10-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

=0901141			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a Low-Speed device enabled
 - 0 = Direct connection to a Low-Speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1
RPB15	RPB15R	RPB15R<3:0>	
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved
RPC0	RPC0R	RPC0R<3:0>	•
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved
RPA8	RPA8R	RPA8R<3:0>	
RPC8	RPC8R	RPC8R<3:0>	•
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4
RPB2	RPB2R	RPB2R<3:0>	
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect
RPB14	RPB14R	RPB14R<3:0>	
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3
RPB9	RPB9R	RPB9R<3:0>	0110 = Reserved 0111 = C1OUT
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved
RPC2	RPC2R	RPC2R<3:0>	
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved

11.4 Ports Control Registers

TABLE 11-3: PORTA REGISTER MAP

ess		0								Bits	6								6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	_	—	—	—	_	_	_	_	—		_	_	_	—	—	_	0000
		15:0	_	—	—	—	—	-			—	_	_	—	_	_	ANSA1	ANSA0	0003
6010	TRISA	31:16	_	—	—	—	—	—			—	_	_		—	_	_	—	0000
0010		15:0	—	—	—	—	_	TRISA10 ⁽²⁾	TRISA9 ⁽²⁾	TRISA8 ⁽²⁾	TRISA7 ⁽²⁾	_	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
6020	PORTA	31:16	—	—	—	—	_	—	—	_	—	_	—						0000
0020		15:0	—	—	—	—	_	RA10 ⁽²⁾	RA9 ⁽²⁾	RA8 ⁽²⁾	RA7 ⁽²⁾	_	—	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	_	—	—	—	_		_	_	—	—	—	_	_	_		_	0000
0000		15:0	—	—	—	—	—	LATA10 ⁽²⁾	LATA9 ⁽²⁾	LATA8 ⁽²⁾	LATA7 ⁽²⁾	—	—	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	_	_	—	—	—	—		—			0000
0040	ODOA	15:0	—	—	—	—	—	ODCA10 ⁽²⁾	ODCA9 ⁽²⁾	ODCA8 ⁽²⁾	ODCA7 ⁽²⁾	—	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
6050	CNPUA	31:16	—	—	—	—	—	—	_	_	—	—	—	—		—			0000
0030	CINFUA	15:0	_	_	—	—	_	CNPUA10 ⁽²⁾	CNPUA9 ⁽²⁾	CNPUA8 ⁽²⁾	CNPUA7 ⁽²⁾	_	—	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
6060	CNPDA	31:16	—	—	—	—		_				—	—			—			0000
0000	CINFDA	15:0	_	_	—	—	_	CNPDA10 ⁽²⁾	CNPDA9 ⁽²⁾	CNPDA8 ⁽²⁾	CNPDA7 ⁽²⁾	_	—	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
6070	CNCONA	31:16	—	—	—	—		_		_	_	—	—			—			0000
0070	CINCONA	15:0	ON	—	SIDL	—	_	_	_	_	—	_	_	_	—	—	—	—	0000
6080	CNENA	31:16	_	—	—	—	_	_	_	_	—	_	—	—	_	_	_	_	0000
0000	CINEINA	15:0	_	_	—	—		CNIEA10 ⁽²⁾	CNIEA9 ⁽²⁾	CNIEA8 ⁽²⁾	CNIEA7 ⁽²⁾			CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
6000	CNISTATA	31:16	_	_	—	—					_		_			—	_		0000
0090	CNSTATA	15:0	_	_	—	—		CNSTATA10 ⁽²⁾	CNSTATA9(2)	CNSTATA8 ⁽²⁾	CNSTATA7 ⁽²⁾			CNSTATA4	CNSTATA3	CNSTATA2	CNSTATA1	CNSTATA0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This bit is only available on 44-pin devices.

								., _, _,
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	-	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_			—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0		_					_	_

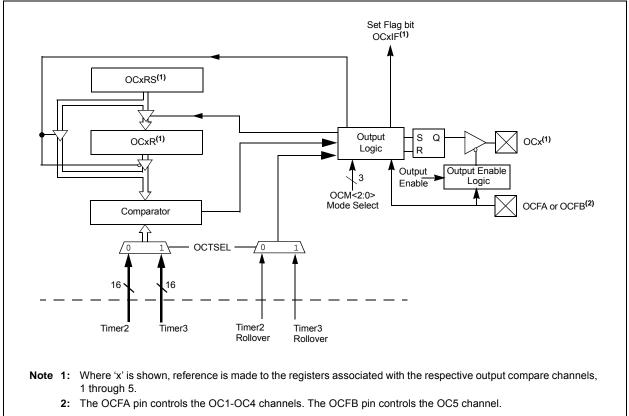
REGISTER 11-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A, B, C)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'


16.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features:

- · Multiple Output Compare Modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

REGIST	ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)								
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)								
	1 = Frame synchronization pulse coincides with the first bit clock								
	0 = Frame synchronization pulse precedes the first bit clock								
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾								
	1 = Enhanced Buffer mode is enabled								
	0 = Enhanced Buffer mode is disabled								
bit 15	ON: SPI Peripheral On bit ⁽¹⁾								
	1 = SPI Peripheral is enabled								
	0 = SPI Peripheral is disabled								
bit 14	Unimplemented: Read as '0'								
bit 13	SIDL: Stop in Idle Mode bit								
	1 = Discontinue module operation when the device enters Idle mode								
	0 = Continue module operation when the device enters Idle mode								
bit 12	DISSDO: Disable SDOx pin bit								
	1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register								
	0 = SDOx pin is controlled by the module								
bit 11-10	MODE<32,16>: 32/16-Bit Communication Select bits								
	When AUDEN = 1:								
	MODE32 MODE16 Communication								
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame								
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame								
	0 1 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame								
	0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame								
	When AUDEN = 0:								
	MODE32 MODE16 Communication								
	1 x 32-bit 0 1 16-bit								
	0 1 10-51								
bit 9	SMP: SPI Data Input Sample Phase bit								
bit 5	Master mode (MSTEN = 1):								
	1 = Input data sampled at end of data output time								
	0 = Input data sampled at middle of data output time								
	Slave mode (MSTEN = 0):								
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.								
	To write a '1' to this bit, the MSTEN value = 1 must first be written.								
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾								
	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit)								
	0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)								
bit 7	SSEN: Slave Select Enable (Slave mode) bit								
	$1 = \overline{SSx}$ pin used for Slave mode								
	0 = SSx pin not used for Slave mode, pin controlled by port function.								
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾								
	1 = Idle state for clock is a high level; active state is a low level								
	0 = Idle state for clock is a low level; active state is a high level								
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in								
	the SYSCLK cycle immediately following the instruction that clears the module's ON bit.								
2:	This bit can only be written when the ON bit = 0 .								
3:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI								
	mode (FRMEN = 1).								
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value								
	of CKP.								

2

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	-	—	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'		ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit			

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I ²	C module is busy
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

- bit 6 I2COV: Receive Overflow Flag bit
 - 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

3: See the "Pin Diagrams" section for the 5V tolerant pins.

TABLE 30-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1		
D313	DACREFH	CVREF Input Voltage	AVss	_	AVDD	V	CVRSRC with CVRSS = 0		
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1		
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size		
D315	DACRES	Resolution	—	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			_	—	DACREFH/32	_	CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	Absolute Accuracy ⁽²⁾		_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
				_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 30-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

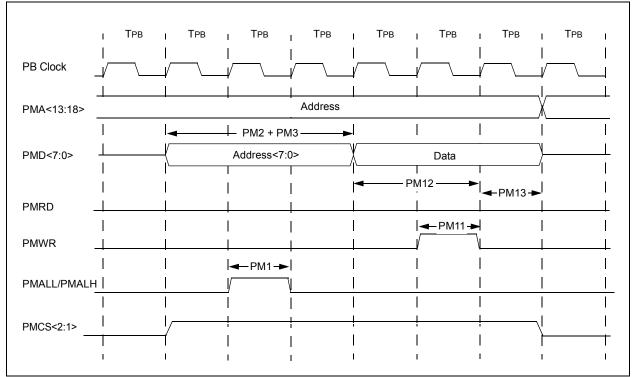
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				TA \leq +85°C for Industrial
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Comments			Comments	
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (1 ohm). Typical voltage on the VCAP pin is 1.8V.

TABLE 30-32:	I2Cx BUS DATA	TIMING REQUIREMENTS	(MASTER MODE)	(CONTINUED)

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param. No.	Symbol	Charac	teristics	Min. ⁽¹⁾	Max.	Units	Conditions
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—
		from Clock	400 kHz mode	—	1000	ns	—
			1 MHz mode (Note 2)	—	350	ns	—
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the
			400 kHz mode	1.3	—	μS	bus must be free
			1 MHz mode (Note 2)	0.5	—	μS	before a new transmission can start
IM50	Св	Bus Capacitive L	oading	—	400	pF	—
IM51	Tpgd	Pulse Gobbler D	elay	52	312	ns	See Note 3

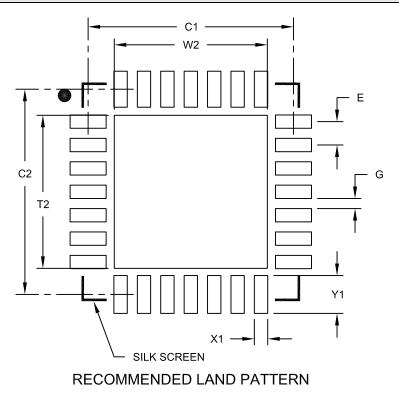
Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: The typical value for this parameter is 104 ns.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM1	Tlat	PMALL/PMALH Pulse Width		1 Трв	_	_	_
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	2 Трв	_	_	_
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	—	_
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns	

TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimensi	Dimension Limits		NOM	MAX	
Contact Pitch	Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

INDEX

50 MHz Electrical Characteristics	301
Α	
AC Characteristics	269
10-Bit Conversion Rate Parameters	291
ADC Specifications	289
Analog-to-Digital Conversion Requirements	292
EJTAG Timing Requirements	300
Internal FRC Accuracy	
Internal RC Accuracy	271
OTG Electrical Specifications	298
Parallel Master Port Read Requirements	297
Parallel Master Port Write	298
Parallel Master Port Write Requirements	298
Parallel Slave Port Requirements	296
PLL Clock Timing	271
Analog-to-Digital Converter (ADC)	209
Assembler	
MPASM Assembler	254

В

Block Diagrams	
ADC Module	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
Core and Peripheral Modules 19	
CPU	
CTMU Configurations	
Time Measurement 227	
DMA	
I2C Circuit 174	
Input Capture 157	
Interrupt Controller63	
JTAG Programming, Debugging and Trace Ports 250	
Output Compare Module161	
PMP Pinout and Connections to External Devices 189	
Reset System59	
RTCC 199	
SPI Module165	
Timer1143	
Timer2/3/4/5 (16-Bit)147	
Typical Multiplexed Port Structure 127	
UART	
WDT and Power-up Timer153	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	

С

C Compilers MPLAB C18254
Charge Time Measurement Unit. See CTMU.
Clock Diagram74
Comparator
Specifications
Comparator Module219
Comparator Voltage Reference (CVref223
Configuration Bit
Configuring Analog Port Pins 128
CPU
Architecture Overview
Coprocessor 0 Registers35

-
86
86
33
1
1
1
3(3; }

D

DC and AC Characteristics	
Graphs and Tables	307
DC Characteristics	258
I/O Pin Input Specifications	263, 264
I/O Pin Output Specifications	265
Idle Current (IIDLE)	261
Power-Down Current (IPD)	262
Program Memory	
Temperature and Voltage Specifications	259
DC Characteristics (50 MHz)	302
Idle Current (IDLE)	303
Power-Down Current (IPD)	303
Development Support	253
Direct Memory Access (DMA) Controller	83

Е

Electrical Characteristics	257
AC	269
Errata	. 16
External Clock	
Timer1 Timing Requirements	275
Timer2, 3, 4, 5 Timing Requirements	276
Timing Requirements	270
External Clock (50 MHz)	
Timing Requirements	304

F

Flash Program Memory	53
RTSP Operation	53

L

I/O Ports	127
Parallel I/O (PIO)	128
Write/Read Timing	128
Input Change Notification	128
Instruction Set	251
Inter-Integrated Circuit (I2C	173
Internal Voltage Reference Specifications	268
Internet Address	341
Interrupt Controller	63
IRG Vector and Bit Location	64

Μ

Memory Maps
PIC32MX110/210 Devices
(4 KB RAM, 16 KB Flash)
PIC32MX120/220 Devices
(8 KB RAM, 32 KB Flash) 39
PIC32MX130/230
(16 KB RAM, 256 KB Flash) 43
PIC32MX130/230 Devices
(16 KB RAM, 64 KB Flash) 40
PIC32MX150/250 Devices
(32 KB RAM, 128 KB Flash) 41
PIC32MX170/270