

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Becano	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064dt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 28-PIN USB DEVICES

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX250F128B

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	18	PGED2/RPB10/D+/CTED11/RB10
5	Vss	19	PGEC2/RPB11/D-/RB11
6	OSC1/CLKI/RPA2/RA2	20	VUSB3V3
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/RB4	22	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14
9	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	TMS/RPB5/USBID/RB5	25	AVDD
12	VBUS	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

TABLE 10: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

			44 1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4/TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4/TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

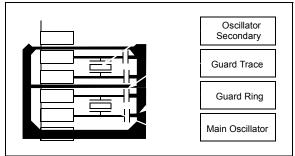
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.


Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

7.1 Interrupt Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess		â								Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000	INTCON	31:16	_	_	—	_			_	-			_	_		—			0000
1000	INTCOM	15:0	—	_	—	MVEC	-		TPC<2:0>		-	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010	INTSTAT ⁽³⁾	31:16	—		—	_	_	_	—	—		_	_	_			—	—	0000
1010	INTOTAL	15:0	—	_	—	—	_		SRIPL<2:0>		_	_			VEC<5:0)>			0000
1020	IPTMR	31:16 15:0								IPTMR<3	1:0>								0000
1020 1550		31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	IFS0	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1010	1504	31:16	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	0000
1040	IFS1	15:0	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP3IF	CMP2IF	CMP1IF	0000
1060	IEC0	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
1060		15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	0000
1070		15:0	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP3IE	CMP2IE	CMP1IE	0000
1090	IPC0	31:16	—	_	—		INT0IP<2:0>		INTOIS	<1:0>	-	—	_	CS1IP<2:0>		CS1IS<1:0>		0000	
1030	11 00	15:0	—	—	—		CS0IP<2:0>		CS0IS	<1:0>	_	—	—	CTIP<2:0>		CTIS	<1:0>	0000	
10A0	IPC1	31:16	—		—		INT1IP<2:0>		INT1IS	<1:0>	_	—	_	0	C1IP<2:0>		OC1IS	S<1:0>	0000
10,10		15:0	—	—	—		IC1IP<2:0>		IC1IS•	<1:0>	_	—	—	٦	Γ1IP<2:0>		T1IS	<1:0>	0000
10B0	IPC2	31:16	_	—	—		INT2IP<2:0>		INT2IS	<1:0>	_	—	_	0	C2IP<2:0>		OC2IS	6<1:0>	0000
1000	11 02	15:0	—		—		IC2IP<2:0>		IC2IS<	<1:0>	_	—	_	1	[21P<2:0>		T2IS	<1:0>	0000
10C0	IPC3	31:16	—	—	—		INT3IP<2:0>		INT3IS	<1:0>	—		—	0	C3IP<2:0>		OC3IS	6<1:0>	0000
1000	1 00	15:0	—	—	—		IC3IP<2:0>		IC3IS<	<1:0>	—		—		[3IP<2:0>		T3IS-		0000
10D0	IPC4	31:16	—		—		INT4IP<2:0>		INT4IS	<1:0>	_	—	_	0	C4IP<2:0>		OC4IS	S<1:0>	0000
1020		15:0	—	—	—		IC4IP<2:0>		IC4IS<	<1:0>		—	_	1	[4IP<2:0>		T4IS	<1:0>	0000
10E0	IPC5	31:16	—	—	—		AD1IP<2:0>		AD1IS	-	_	—	_	0	C5IP<2:0>		OC5IS	S<1:0>	0000
1020		15:0	—	_	—		IC5IP<2:0>		IC5IS<		-	—	—	T5IP<2:0>		T5IS<1:0>		0000	
10F0	IPC6	31:16	—	—	—		CMP1IP<2:0>		CMP1IS			_	—	F	CEIP<2:0>		FCEIS	S<1:0>	0000
101 0		15:0	—	—	—	F	RTCCIP<2:0>		RTCCIS	6<1:0>	—		_	FS	CMIP<2:0>	>	FSCMI	S<1:0>	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

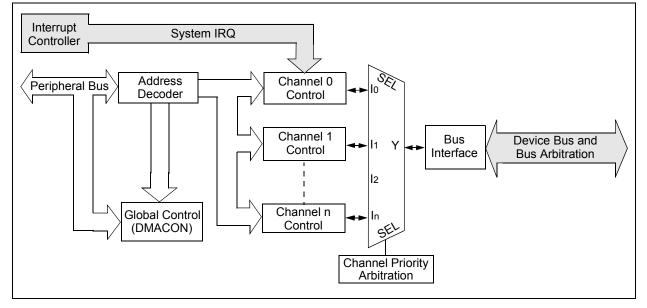
REGIST	ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)							
bit 9-8	IS01<1:0>: Interrupt Subpriority bits							
	11 = Interrupt subpriority is 3							
	10 = Interrupt subpriority is 2							
	01 = Interrupt subpriority is 1							
	00 = Interrupt subpriority is 0							
bit 7-5	Unimplemented: Read as '0'							
bit 4-2	IP00<2:0>: Interrupt Priority bits							
	111 = Interrupt priority is 7							
	•							
	•							
	•							
	010 = Interrupt priority is 2							
	001 = Interrupt priority is 1							
	000 = Interrupt is disabled							
bit 1-0	IS00<1:0>: Interrupt Subpriority bits							
	11 = Interrupt subpriority is 3							
	10 = Interrupt subpriority is 2							
	01 = Interrupt subpriority is 1							
	00 = Interrupt subpriority is 0							
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.							

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).


The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32, such as Peripheral Bus devices: SPI, UART, PMP, etc., or memory itself. Figure 9-1 show a block diagram of the DMA Controller module.

The DMA Controller module has the following key features:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

FIGURE 9-1: DMA BLOCK DIAGRAM

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- · Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CHSSA<31:24>											
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHSSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHSSA<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHSSA	<7:0>							

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	CHDSA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CHDSA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHDSA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CHDSA	<7:0>						

Legend:						
R = Readable bit	W = Writable bit	e bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

12.2 Timer1 Control Registers

TABLE 12-1: TIMER1 REGISTER MAP

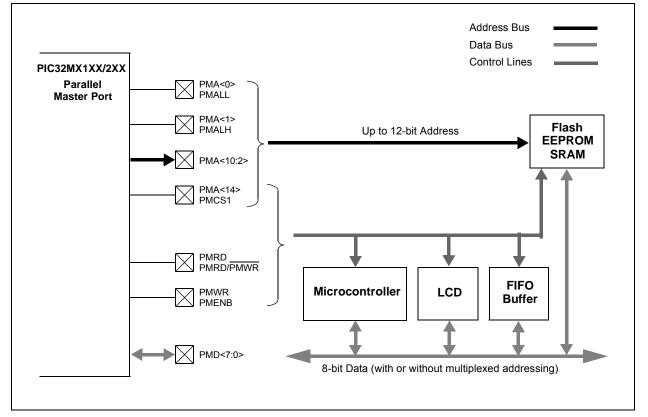
ess	Register Name ⁽¹⁾	0								В	its								s
Virtual Addre (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	T1CON	31:16	_	_	_	_	_	—	_	—	_	—	—	—	_	—	_	_	0000
0600	TICON	15:0	ON	—	SIDL	TWDIS	TWIP	—	_	—	TGATE	_	TCKPS	S<1:0>	—	TSYNC	TCS	_	0000
0610	TMR1	31:16	—	-	—	—	—	—	—	—	—	—	_	_	—	—	—	—	0000
0010		15:0								TMR1	<15:0>								0000
0620	PR1	31:16	—	_	_	_	_	—		—	—	_	—	_	_	_	_		0000
0020	PRI	15:0								PR1<	:15:0>								FFFF

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

20.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128),
	which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Key features of the PMP module include:

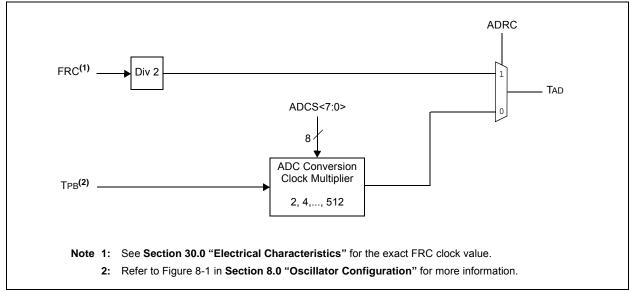

- Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single Chip Select
 - up to 12 address lines without Chip Select
- One Chip Select line
- Programmable strobe options
 - Individual read and write strobes or;
 - Read/write strobe with enable strobe
- · Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- · Legacy parallel slave port support
- · Enhanced parallel slave support
- Address support
- 4-byte deep auto-incrementing buffer
- · Programmable Wait states
- · Selectable input voltage levels

Figure 20-1 illustrates the PMP module block diagram.

FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		_	_		—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_		—	_
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	_	—	—	—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>		CREF	_	_	CCH	<1:0>

REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

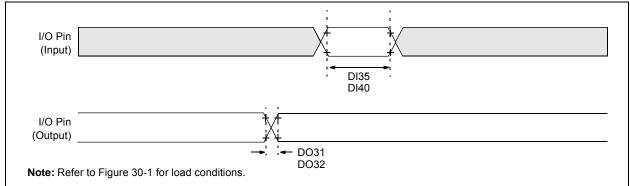
- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 10 EDGSEQEN: Edge Sequence Enable bit 1 = Edge1 must occur before Edge2 can occur 0 = No edge sequence is needed IDISSEN: Analog Current Source Control bit⁽²⁾ bit 9 1 = Analog current source output is grounded 0 = Analog current source output is not grounded bit 8 **CTTRIG:** Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current bit 1-0 IRNG<1:0>: Current Range Select bits⁽³⁾ 11 = 100 times base current 10 = 10 times base current
 - 01 = Base current level
 - 00 = 1000 times base current⁽⁴⁾
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical 3: Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No. Symbol Characteristics			Min.	Typical	Max.	Units	Comments	
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVDD = VDD, AVSS = VSS	
D301	VICM	Input Common Mode Voltage	0	-	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)	
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)	
D303A	Tresp	Large Signal Response Time	_	150	400	ns	AVDD = VDD, AVSS = VSS (Note 1,2)	
D303B	TSRESP	Small Signal Response Time	-	1	_	μS	This is defined as an input step of 50 mV with 15 mV of overdrive (Note 2)	
D304	ON2ov	Comparator Enabled to Output Valid	_	_	10	μs	Comparator module is configured before setting the comparator ON bit (Note 2)	
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	_	
D312	TSET	Internal Comparator Voltage DRC Reference Setting time	_	—	10	μs	(Note 3)	

TABLE 30-13: COMPARATOR SPECIFICATIONS


Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

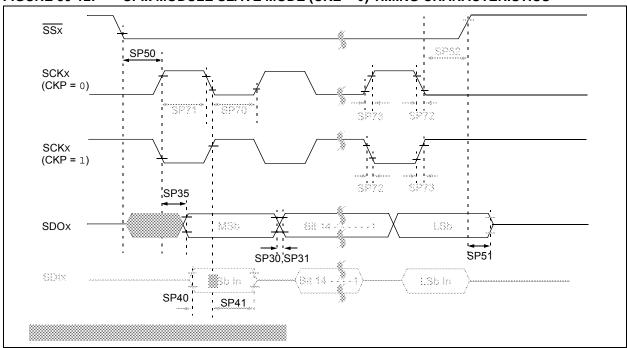


TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAF	RACTERIS	STICS	Standard Ope (unless other Operating tem	wise state		≤ +85°C fc	or Industria	
Param. No. Symbol Characteris		stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
DO31	TIOR Port Output Rise Time		ne		5	15	ns	Vdd < 2.5V
					5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Time		_	5	15	ns	Vdd < 2.5V
	DI35 TINP INTx Pin High or Low				5	10	ns	VDD > 2.5V
DI35			w Time	10	_	_	ns	_
DI40	Trbp	CNx High or Low Tir	me (input)	2	_		TSYSCLK	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. Symbol Characteristics ⁽¹⁾			Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—	_	ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	—	_	ns	—	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	_	15	ns	VDD > 2.7V	
	TscL2DoV	SCKx Edge	—	—	20	ns	VDD < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHA	RACTERIS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No. Symbol Characteristics				Min.	Max.	Units	Conditions
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode (Note 1)	250		ns	
IS40	40 TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—
			400 kHz mode	0	1000	ns	
			1 MHz mode (Note 1)	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus
			400 kHz mode	1.3	—	μs	must be free before a new transmission can start
			1 MHz mode (Note 1)	0.5	—	μS	
IS50	Св	Bus Capacitive Lo	ading		400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARAG	S ⁽²⁾	(unless of	Operating herwise state temperature		
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF-

TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

U1OTGSTAT (USB OTG Status)	110
U1PWRC (USB Power Control)	112
U1SOF (USB SOF Threshold)	123
U1STAT (USB Status)	118
U1TOK (USB Token)	122
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	185
WDTCON (Watchdog Timer Control)	155
Resets	
Revision History	
RTCALRM (RTC ALARM Control)	

S

Serial Peripheral Interface (SPI)	165
Software Simulator (MPLAB SIM)	
Special Features	239

Т

Timer1 Module Timer2/3, Timer4/5 Modules Timing Diagrams	
10-Bit Analog-to-Digital Conversion	
(ASAM = 0, SSRC<2:0> = 000)	293
10-Bit Analog-to-Digital Conversion (ASAM = 1,	
SSRC<2:0> = 111, SAMC<4:0> = 00001)	294
EJTAG	300
External Clock	269
I/O Characteristics	272
I2Cx Bus Data (Master Mode)	283
I2Cx Bus Data (Slave Mode)	286
I2Cx Bus Start/Stop Bits (Master Mode)	283
I2Cx Bus Start/Stop Bits (Slave Mode)	286
Input Capture (CAPx)	276
OCx/PWM	
Output Compare (OCx)	277
Parallel Master Port Read	296
Parallel Master Port Write	297

Parallel Slave Port	. 295
SPIx Master Mode (CKE = 0)	. 278
SPIx Master Mode (CKE = 1)	. 279
SPIx Slave Mode (CKE = 0)	. 280
SPIx Slave Mode (CKE = 1)	. 281
Timer1, 2, 3, 4, 5 External Clock	. 275
UART Reception	. 187
UART Transmission (8-bit or 9-bit Data)	. 187
Timing Requirements	
CLKO and I/O	. 272
Timing Specifications	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture Requirements	
Output Compare Requirements	
Simple OCx/PWM Mode Requirements	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 280
Timing Specifications (50 MHz)	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 305
U	
LIADT	101

UART	
USB On-The-Go (OTG)	103
V	
VCAP nin	250

VCAP pin	
Voltage Regulator (On-Chip)	250
W	
M/M/M/ Addross	2/1

WWW Address	. 341
WWW, On-Line Support	16