

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f064dt-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4:PIN NAMES FOR 28-PIN USB DEVICES

28	PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)					
	1 SSOP	28	1 SOIC	28	1	28 SPDIP
	PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B					
Pin #	Full Pin Name	Pin #		Full Pin N	Name	
Pin #	Full Pin Name	Pin #	VBUS	Full Pin N	Name	
Pin # 1 2	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	Pin # 15 16	VBUS TDI/RPB7/CTED3/PM	Full Pin N	Name	
Pin # 1 2 3	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	Pin # 15 16 17	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE	Full Pin N D5/INT0/RE	Name 37 /RB8	
Pin # 1 2 3 4	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	Pin # 15 16 17 18	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	Pin # 15 16 17 18 19	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	Pin # 15 16 17 18 19 20	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6 7	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	Pin # 15 16 17 18 19 20 21	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss	Pin # 15 16 17 18 19 20 21 21 22	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9 10	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I TED11/RB10 11 PMRD/RB13	Name 37 /RB8 RB9 0 3	
Pin # 1 2 3 4 5 6 7 8 9 10 11	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	Pin # 15 16 17 18 19 20 21 22 23 24 25	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/I CVREFOUT/AN10/C3IN	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10 11 IB/RPB14/V	Name 37 /RB8 RB9 0 3 /BUSON/S	SCK1/CTED5/RB14
Pin # 1 2 3 4 5 6 7 8 9 10 11 12	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/f CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB11 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 5/PMCS1	SCK1/CTED5/RB14 1/RB15
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VpD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC AVSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB13 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 5/PMCS1	SCK1/CTED5/RB14 1/RB15

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 9: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/CTED11/PMD2/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/PMD1/RB11	31	OSC2/CLKO/RPA3/RA3
10	AN12/PMD0/RB12	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14	36	RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	41	PGED3/RPB5/PMD7/RB5
20	VREF-/CVREF-/AN1/RPA1/CTED2/RA1	42	PGEC3/RPB6/PMD6/RB6
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

44

1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				NVMDA	TA<31:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10				NVMDA	TA<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				NVMDA	ATA<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	NVMDATA<7:0>							

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				NVMSRCA	DDR<31:24	>		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	NVMSRCADDR<23:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	NVMSRCADDR<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	NVMSRCADDR<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	_	_	_		IP03<2:0>		IS03	<1:0>	
22.16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	—	—	—		IP02<2:0>	_	IS02<1:0>		
15.9	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	—	—	—		IP01<2:0>			IS01<1:0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0		_			IP00<2:0>		IS00<1:0>		

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 31-29 Unimplemented: Read as '0'
- bit 28-26 IP03<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 25-24 IS03<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 bit 23-21 Unimplemented: Read as '0' bit 20-18 IP02<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 17-16 IS02<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 bit 15-13 Unimplemented: Read as '0' bit 12-10 IP01<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- **Note:** This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_		_	—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPP	ULUP	: D+ F	Pull-Up I	Enable	bit	

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- It 6 DIMPOLOP: D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D + data line pull-down resistor is disabled
- bit 4 **DMPULDWN:** D- Pull-Down Enable bit
 - 1 = D- data line pull-down resistor is enabled
 - 0 = D- data line pull-down resistor is disabled
- bit 3 VBUSON: VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
- bit 1 VBUSCHG: VBUS Charge Enable bit
 - 1 = VBUS line is charged through a pull-up resistor
 - 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet rejected due to CRC5 error
 - 0 = Token packet accepted
 - EOFEF: EOF Error Flag bit^(3,5)
 - 1 = An EOF error condition was detected
 - 0 = No EOF error condition was detected
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check failed
 - 0 = PID check passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABL	.E 11-6:	E PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)																	
ss										В	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		_		_	—		—		—		_	—	—	—	—	0000
FA94	UICISK	15:0	_		_	_	—	—	_	—	—	—		_		U1CTS	R<3:0>		0000
		31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FADO	UZRAR	15:0	_		_	_	—	—	_	—	—	—		_		U2RXI	R<3:0>		0000
EAEC	LIDOTOD	31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FASC	UZCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U2CTS	R<3:0>		0000
EV01	SD11D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA04	SDIK	15:0	_	—	_	—	—	—	—	—	—	—	_	—		SDI1F	R<3:0>		0000
EV 00	881D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA00	33 IK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SS1R	<3:0>		0000
EAOO	20120	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA90	SDIZK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SDI2F	R<3:0>		0000
EA04	660D	31:16	_		_	_	—	—	_	—	—	—		_	—	—		—	0000
FA94	332R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SS2R	<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FADO	REFULKIR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		REFCL	(IR<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Figure 12-1 illustrates a general block diagram of Timer1.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—		—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	-	—	—			
15.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
15:8	ON ^(1,3)	—	SIDL ⁽⁴⁾	—	—	-	—	—			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	_	TCS ⁽³⁾	_			

REGISTER 13-1: TXCON: TYPE B TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled
 - 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12-8 Unimplemented: Read as '0'

- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾
 - When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value

000 = 1:1 prescale value

- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3, and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	SIDL	_	_	_	_	—
7:0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 12-6 Unimplemented: Read as '0'

- bit 5 OC32: 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred
- bit 3 **OCTSEL:** Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

REGISTE	R 18-1:	I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	GCEN: Ge	neral Call Enable bit (when operating as I ² C slave)
	1 = Enable (module)	interrupt when a general call address is received in the I2CxRSR e is enabled for reception)
	0 = Genera	al call address is disabled
bit 6	STREN: S	CLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in co	njunction with SCLREL bit.
	1 = Enable	software or receive clock stretching
b:+ F		$\frac{1}{2}$ solution of the constant of $\frac{1}{2}$ constant of the during sector receives
DILS	ACKDI: A	is transmitted when the software initiates on Asknowledge assumes
	1 = Send a	ACK during an Acknowledge sequence
	0 = Send a	an ACK during an Acknowledge sequence
bit 4	ACKEN: A receive)	cknowledge Sequence Enable bit (when operating as I ² C master, applicable during maste
	1 = Initiate Hardwa 0 = Acknow	Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. are clear at end of master Acknowledge sequence. wledge sequence not in progress
bit 3	RCEN: Re	ceive Enable bit (when operating as I ² C master)
	1 = Enable 0 = Receiv	s Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. re sequence not in progress
bit 2	PEN: Stop	Condition Enable bit (when operating as I ² C master)
	1 = Initiate 0 = Stop co	Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. ondition not in progress
bit 1	RSEN: Re	peated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate master	Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of Repeated Start sequence.
	0 = Repeat	ted Start condition not in progress
bit 0	SEN: Start	Condition Enable bit (when operating as I ² C master)
	1 = Initiate 0 = Start co	Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. ondition not in progress

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 Трв
 - 10 = Wait of 3 Трв
 - 01 = Wait of 2 TPB
 - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 TPB
- 10 = Wait of 2 TPB
- 01 = Wait of 1 ТРВ
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	_	—	-	
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:10	—	—	—	MONTH10		MONTH01<3:0>			
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	—	—	DAY1	0<1:0>		DAY01	<3:0>		
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
7:0	_	_	_	_	_	WDAY01<2:0>			

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

24.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the module is shown in Figure 24-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	—	—	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	—	—	—	—	—	—
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	CVROE	CVRR	CVRSS		CVR<3:0>		

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, re		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled
 - Setting this bit does not affect other bits in the register.
 - 0 = Module is disabled and does not consume current.
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit
 - 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 CVRR: CVREF Range Selection bit
 - 1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size
 - 0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS
- bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits

<u>When CVRR = 1:</u> CVREF = (CVR<3:0>/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

TABLE 30-34: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard O (unless oth Operating te	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions				
Device	Supply										
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_				
AD02	AVss	Module Vss Supply	Vss	—	AVDD	V	(Note 1)				
Referen	ce Inputs										
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)				
AD06	Vrefl	Reference Voltage Low	AVss	—	VREFH – 2.0	V	(Note 1)				
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	_	AVdd	V	(Note 3)				
AD08	IREF	Current Drain	_	250	400	μA	ADC operating				
AD08a			—	_	3	μA	ADC off				
Analog	Input										
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—				
AD13	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V	—				
AD14	Vin	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V	—				
AD15	—	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VINL = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10\;k\Omega \end{array}$				
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)				
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-		1					
AD20c	Nr	Resolution		10 data bit	s	bits	—				
AD21c	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V				
AD22c	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)				
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V				
AD24c	EOFF	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V				
AD25c	_	Monotonicity	_	_	_	_	Guaranteed				

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

AC CHARA	S ⁽²⁾				
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC
Up to 400 ksps	200 ns	200 ns	5.0 κΩ	2.5V to 3.6V	ANX CHX ANX CHX ANX OF VREF-

TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Brand Architecture Product Groups Flash Memory Family Program Memory Size Pin Count Software Targeting Tape and Reel Flag (if Speed (if applicable) Temperature Range Package Pattern	PIC32 MX 1XX F 032 D B T - 50 I / PT - XXX Example: PIC32 MX 1XX F 032 D B T - 50 I / PT - XXX Example: PIC32 MX 1XX F 032 D B T - 50 I / PT - XXX Example: PIC32 MX 10F032DT-I/PT: General purpose PIC32, 32-bit RISC MCU with M4K [®] core, 32 KB program memory, 44-pin, Industrial temperature, TQFP package. g (KB)
	Flash Memory Family
Architecture	$MX = M4K^{\odot} MCU \text{ core}$
Product Groups	1XX = General purpose microcontroller family 2XX = General purpose microcontroller family
Flash Memory Family	F = Flash program memory
Program Memory Size	016 = 16K 032 = 32K 064 = 64K 128 = 128K 256 = 256K
Pin Count	B = 28-pin C = 36-pin D = 44-pin
Software Targeting	B = Targeted for Bluetooth [®] Audio Break-in devices
Speed	 = 40 MHz - () indicates a blank field; package markings for 40 MHz devices do not include the Speed = 50 MHz
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) V = -40° C to $+105^{\circ}$ C (V-temp)
Package	ML= 28-Lead (6x6 mm) QFN (Plastic Quad Flatpack)ML= 44-Lead (8x8 mm) QFN (Plastic Quad Flatpack)PT= 44-Lead (10x10x1 mm) TQFP (Plastic Thin Quad Flatpack)SO= 28-Lead (7.50 mm) SOIC (Plastic Small Outline)SP= 28-Lead (300 mil) SPDIP (Skinny Plastic Dual In-line)SS= 28-Lead (5.30 mm) SSOP (Plastic Shrink Small Outline)TL= 36-Lead (5x5 mm) VTLA (Very Thin Leadless Array)TL= 44-Lead (6x6 mm) VTLA (Very Thin Leadless Array)
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample