

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f256b-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

		Pin Nu	mber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
AN0	27	2	33	19	Ι	Analog	Analog input channels.
AN1	28	3	34	20	I	Analog	
AN2	1	4	35	21	I	Analog	
AN3	2	5	36	22	I	Analog	
AN4	3	6	1	23	I	Analog	
AN5	4	7	2	24	I	Analog	
AN6		_	3	25	I	Analog	
AN7		_	4	26	I	Analog	
AN8	—		—	27	I	Analog	
AN9	23	26	29	15	I	Analog	
AN10	22	25	28	14	I	Analog	
AN11	21	24	27	11	I	Analog	
AN12	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾ 11 ⁽³⁾	10 ⁽²⁾ 36 ⁽³⁾	- 1	Analog	
CLKI	6	9	7	30	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	7	10	8	31	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	6	9	7	30	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	7	10	8	31	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	8	11	9	33	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	9	12	10	34	0	-	32.768 kHz low-power oscillator crystal output.
REFCLKI	PPS	PPS	PPS	PPS	I	ST	Reference Input Clock
REFCLKO	PPS	PPS	PPS	PPS	0	_	Reference Output Clock
IC1	PPS	PPS	PPS	PPS	I	ST	Capture Inputs 1-5
IC2	PPS	PPS	PPS	PPS		ST	1
IC3	PPS	PPS	PPS	PPS		ST	1
IC4	PPS	PPS	PPS	PPS		ST	1
IC5	PPS	PPS	PPS	PPS	I	ST	1
Legend:	CMOS = CM	MOS compa	atible input	or output		Analog =	Analog input P = Power
:	ST = Schmi	itt Trigger in	put with CN	MOS levels	O = Outp	ut I=Input	
	TTL = TTL i	input buffer				PPS = Pe	eripheral Pin Select — = N/A

TTL = TTL input buffer

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability. 2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX110/210 DEVICES (4 KB RAM, 16 KB FLASH)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23:16	—	—	—	BMX ERRIXI	BMX ERRICD	Bit /3 Bit 26/18/10/2 Bit 25/17/9/1 Bit 24/16/8 U-0 U-0 U-0 — — — R/W-1 R/W-1 R/W-1 BMX BMX BMX D ERRDMA ERRDS ERRIS U-0 U-0 U-0 U-0 BMX BMX BMX BMX BMX ERRDS ERRIS U-0 U-0 U-0 H-0 P-0 P-0 BMX-0 R/W-0 R/W-1 BMXARB BMXARB EXT	BMX ERRIS			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	-	—	_	—		
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1		
7:0	_	BMX WSDRM	_	_	_	BMXARB<2:0>				

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-21 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 20	BMXERRIXI: Enable Bus Error from IXI bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18	BMXERRDMA: Bus Error from DMA bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17	BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16	BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7	Unimplemented: Read as '0'
bit 6	BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
	 1 = Data RAM accesses from CPU have one wait state for address setup 0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3	Unimplemented: Read as '0'
bit 2-0	BMXARB<2:0>: Bus Matrix Arbitration Mode bits
	111 = Reserved (using these Configuration modes will produce undefined behavior)
	•
	•
	011 = Reserved (using these Configuration modes will produce undefined behavior)010 = Arbitration Mode 2
	001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0

7.1 Interrupt Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess		0								Bits										
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
1000		31:16			—	—		—	—			_	_	_	—	_	_	_	0000	
1000	INTCOM	15:0		-	_	MVEC	—		TPC<2:0>		-	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000	
1010	INITSTAT(3)	31:16	_	—	—	—	—	—	—	_	_	—	—	—	—				0000	
1010	INTOTAL	15:0		—		—	— — SI				—	—			VEC<5:0)>			0000	
1020	IPTMR	31:16																0000		
1020		15:0		-	-	-		-	-		1.0-				-	-	-	-	0000	
1030	IES0	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000	
1030	11 00	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000	
1040	IES1	31:16	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	0000	
1040	11.51	15:0	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP3IF	CMP2IF	CMP1IF	0000	
1060	IECO	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000	
1000	ILCO	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000	
1070	IEC1	31:16	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	0000	
1070	ILCI	15:0	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP3IE	CMP2IE	CMP1IE	0000	
1000		31:16	_	—	_		INT0IP<2:0>		INT0IS<1:0>		_	_	_	CS1IP<2:0>			CS1IS	S<1:0>	0000	
1090	IFCU	15:0	-	—	_		CS0IP<2:0>		CS0IS<1:0>			_	_	CTIP<2:0>		> CTIS<1		<1:0>	0000	
1040	IDC1	31:16		—	_		INT1IP<2:0>		INT1IS	<1:0>		_	—	OC1IP<2:0>		OC1IS	S<1:0>	0000		
IUAU	IFCT	15:0		_	_		IC1IP<2:0>		IC1IS-	<1:0>		-	—	T1IP<2:0>		T1IS	<1:0>	0000		
1000		31:16	_	_	_		INT2IP<2:0>		INT2IS	<1:0>	_	_	_	OC2IP<2:0>		OC2IP<2:0>		OC2IS	6<1:0>	0000
1080	IPC2	15:0		_			IC2IP<2:0>		IC2IS-	<1:0>	-	—	_	-	T2IP<2:0>		T2IS	<1:0>	0000	
1000	IDO2	31:16	_	—	_		INT3IP<2:0>		INT3IS	<1:0>	_	—	_	C	C3IP<2:0>		OC3IS	6<1:0>	0000	
1000	IPC3	15:0	_	—	_		IC3IP<2:0>		IC3IS-	<1:0>	_	—	_	-	T3IP<2:0>		T3IS-	<1:0>	0000	
1000		31:16	_	—	_		INT4IP<2:0>		INT4IS	<1:0>	_	—	_	C	C4IP<2:0>		OC4IS	6<1:0>	0000	
1000	IPC4	15:0		_			IC4IP<2:0>		IC4IS•	<1:0>	-	—	_	-	T4IP<2:0>		T4IS	<1:0>	0000	
1050	IDOS	31:16	_	_	_		AD1IP<2:0>			<1:0>	_	_	_	C	C5IP<2:0>		OC5IS	6<1:0>	0000	
IUEU	IPC5	15:0	_	_	_		IC5IP<2:0>			IC5IS<1:0> — — — T5IP<2:0>		T5IP<2:0>			T5IS<1:0>		0000			
1050	IDCC	31:16	—	_	—	(CMP1IP<2:0>	>	CMP1IS	S<1:0>	—	—	_	FCEIP<2:0>			FCEIS	6<1:0>	0000	
10-0	IPCO	15:0	_	_	—	F	RTCCIP<2:0>	>	RTCCIS	S<1:0>	_	_		FS	CMIP<2:0>	>	FSCMI	S<1:0>	0000	

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
23.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

9.1 DMA Control Registers

TABLE 9-1: DMA GLOBAL REGISTER MAP

ess	5	0								Bi	ts								6
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000		31:16	_	-	_	—	—	—	—	_	_	—	—	—	_	—	—	_	0000
3000	DIVIACON	15:0	ON	—	—	SUSPEND	DMABUSY	_	_	_	_	_	—	_	—	—	—	—	0000
3010	DMASTAT	31:16	—	-	—	—	_	_	_	_	_	_	_	_	_	—	_	—	0000
3010 D	DIVIASTAT	15:0			_	_	_	_	_	_	_	_	_	_	RDWR	DI	MACH<2:0>	(2)	0000
3020 0		31:16									D-31.05								0000
3020	DIVIAADDIN	15:0	5:0												0000				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

TABLE 9-2: DMA CRC REGISTER MAP

ess	5	Bits																	
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3030 1	DCBCCON	31:16	—	—	BYTC)<1:0>	WBO	—	—	BITO	_	—	_	_	_	_	_	_	0000
3030	DCRCCON	15:0	_	_	_			PLEN<4:0>	•		CRCEN	CRCAPP	CRCTYP	—	_	C	RCCH<2:0	>	0000
2040		31:16									TA-21.05								0000
3040	DCRCDAIA	15:0			DURUDAIA<31:0>											0000			
2050	DCBCVOB	31:16													0000				
3050	DUNUAUR	15:0	5:0 DCRCXOR<51.02										0000						

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess		- ge									Bit	s							
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5390	LI1EP9	31:16	—	—	—	—	—	—	-		_	_	—	—	—	-	—	—	0000
0000	UTER 9	15:0	_	—	—	—		—	_	—	_		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	53A0 U1EP10	31:16	_	—	—	—	—	—	_	—	_	_	—		_	_	—		0000
53AU		15:0	-	—	_	—	_	_	-	_	_	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		_	_	_	_	_		_			_	—			_	—	0000
5560		15:0		—	_	_	_	_		_	-	-	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5300		31:16		_	_	_	_	_		_			_	—			_	—	0000
5500	UILF 12	15:0		—	_	_	_	_		_	-	-	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5200		31:16		—	_	_	_	_		_	-	-	—	—		-		—	0000
5500	UILF 13	15:0		—	_	_	_	_		_	-	-	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	—	0000
53E0	UTEP14	15:0	_	_		_			_		_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_		_			_		_	_	_	_	_	_	_	—	0000
53F0	UTEP15	15:0	_						_			-		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

INE OIOT											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	—	—	—	—	—	—		—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	-	—			
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	—	—	—	—		—			
7.0	R/WC-0, HS	U-0	R/WC-0, HS								
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF			

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	pit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIF:** ID State Change Indicator bit
 - 1 = A change in the ID state was detected
 - 0 = No change in the ID state was detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1 ms, but different from last time
- 0 = USB line state has not been stable for 1 ms
- bit 4 ACTVIF: Bus Activity Indicator bit
 - 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
 - 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = A change on the session valid input was detected
 - 0 = No change on the session valid input was detected

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	_	_	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
1.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled

bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit

- 1 = 1 millisecond timer interrupt is enabled
- 0 = 1 millisecond timer interrupt is disabled

bit 5 LSTATEIE: Line State Interrupt Enable bit

- 1 = Line state interrupt is enabled
- 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = Activity interrupt is enabled
 - 0 = Activity interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
 - 1 = B-Device session end interrupt is enabled
 - 0 = B-Device session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
 - 1 = A-Device VBUS valid interrupt is enabled
 - 0 = A-Device VBUS valid interrupt is disabled

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess)		e	Bits												6				
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	-	_	-	-	_	_	—	_	_	_	—	_	_	_	0000
0000	WDTCON -	15:0	ON	_	_	_	—	_	_	_	_		SI	VDTPS<4:	0>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0						
23.10	_	-	_	_	_	—	_	—
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	BUSY	IRQM<1:0>		INCM<1:0>		—	MODE	=<1:0>
7.0	R/W-0	R/W-0						
7:0	WAITB	<1:0>(1)	WAITM<3:0>(1)				WAITE<1:0> ⁽¹⁾	

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address
- bit 10 Unimplemented: Read as '0'
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
 - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)
- bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
 - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
 - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
 - 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾

- 1111 = Wait of 16 Трв •
- . 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31.24	—	—	—	—	—		—	_
00.40	U-0	U-0						
23:10	-	—	—	—	—		—	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	—	—	F	ORM<2:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
		SSRC<2:0>		CLRASAM		ASAM	SAMP ⁽²⁾	DONE ⁽³⁾

REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
- bit 14 **Unimplemented:** Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 12-11 Unimplemented: Read as '0'

- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
 - 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)

 - 000 =Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing SAMP bit ends sampling and starts conversion
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	R	R	R	R	R	R	R	R			
31:24		VER<	3:0> (1)			DEVID<	27:24> ⁽¹⁾				
00.40	R R		R	R	R	R	R	R			
23:10	DEVID<23:16> ⁽¹⁾										
45.0	R	R	R	R	R	R	R	R			
15:8	DEVID<15:8> ⁽¹⁾										
7.0	R	R	R	R	R	R	R	R			
7:0				DEVID	<7:0>(1)						

REGISTER 27-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID bits⁽¹⁾

Note 1: See the "*PIC32 Flash Programming Specification*" (DS60001145) for a list of Revision and Device ID values.

DC CHARACTERISTICS			Standard Operating Co (unless otherwise state Operating temperature			nditions: 2.3V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage	_	_	0.4	V	$\text{Iol} \leq 10 \text{ mA}, \text{ Vdd} = 3.3 \text{V}$
DO20	Vон	Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -14 mA, VDD = 3.3V
		I/O Pins	2.0 ⁽¹⁾	—	—	V	IOH \ge -12 mA, VDD = 3.3V
			2.4	_	_	v	Ioh \geq -10 mA, Vdd = 3.3V
			3.0(1)	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

AC CHARA	S ⁽²⁾	$\label{eq:standard operating Conditions (see Note 3): 2.5V to 3.6V (unless otherwise stated) \\ Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \text{ for V-temp} \\ \end{array}$			
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC
Up to 400 ksps	200 ns	200 ns	5.0 κΩ	2.5V to 3.6V	ANX CHX ANX OF VREF-

TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Microchip Technology Drawing C04-157C Sheet 1 of 2

TABLE A-1:	MAJOR SECTION UPDATES	(CONTINUED)	
------------	-----------------------	-------------	--

Section	Update Description
29.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings (removed Voltage on VCORE with respect to Vss).
	Added the SPDIP specification to the Thermal Packaging Characteristics (see Table 29-2).
	Updated the Typical values for parameters DC20-DC24 in the Operating Current (IDD) specification (see Table 29-5).
	Updated the Typical values for parameters DC30a-DC34a in the Idle Current (IIDLE) specification (see Table 29-6).
	Updated the Typical values for parameters DC40i and DC40n and removed parameter DC40m in the Power-down Current (IPD) specification (see Table 29-7).
	Removed parameter D320 (VCORE) from the Internal Voltage Regulator Specifications and updated the Comments (see Table 29-13).
	Updated the Minimum, Typical, and Maximum values for parameter F20b in the Internal FRC Accuracy specification (see Table 29-17).
	Removed parameter SY01 (TPWRT) and removed all Conditions from Resets Timing (see Table 29-20).
	Updated all parameters in the CTMU Specifications (see Table 29-39).
31.0 "Packaging Information"	Added the 28-lead SPDIP package diagram information (see 31.1 "Package Marking Information" and 31.2 "Package Details").
"Product Identification System"	Added the SPDIP (SP) package definition.

Revision C (November 2011)

All major changes are referenced by their respective section in Table A-2.

TABLE A-2:	MAJOR SECTION UPDATES
------------	------------------------------

Section	Update Description			
"32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog"	Revised the source/sink on I/O pins (see "Input/Output" on page 1). Added the SPDIP package to the PIC32MX220F032B device in the PIC32MX2XX USB Family Features (see Table 2).			
4.0 "Memory Organization"	Removed ANSB6 from the ANSELB register and added the ODCB6, ODCB10, and ODCB11 bits in the PORTB Register Map (see Table 4-20).			
29.0 "Electrical Characteristics"	Updated the minimum value for parameter OS50 in the PLL Clock Timing Specifications (see Table 29-16).			