

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f256bt-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 3: **PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES**

28	-PIN SOIC, SPDIP, SSOP (TOP VIEW) ^{(1,2,3}	9							
	1 SSOI PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B	28 ס		1 SC	JIC	28	1	SPDIP	28
	PIC32MX150F128B PIC32MX170F256B								
Din #	Full Bin Name	p;	. #			Eull Bin	Nama		
Pin #	Full Pin Name		n #			Full Pin	Name		
1	MCLR	1	5 F	PGEC3/RPB		RB6			
1 2	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	1	5 F 6 T	DI/RPB7/C	TED3/PN	RB6 ID5/INT0/F	RB7		
1 2 3	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1		5 F 6 7 7 7	TDI/RPB7/C TCK/RPB8/S	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0		5 F 6 1 7 1 8 1	IDI/RPB7/C ICK/RPB8/S IDO/RPB9/S	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4 5	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1		5 F 6 7 7 7 8 7 9 \	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss	TED3/PM SCL1/CTE	RB6 ID5/INT0/F ED10/PMD	RB7 04/RB8		
1 2 3 4	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2		5 F 6 7 7 7 8 7 9 \ 0 \	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap	TED3/PM SCL1/CTE SDA1/CTI	RB6 ID5/INT0/F ED10/PME ED4/PMD	RB7 04/RB8 3/RB9		
1 2 3 4 5 6	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3		5 F 6 1 7 7 8 1 9 \ 0 \ 1 F	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB	TED3/PM SCL1/CTE SDA1/CTI	RB6 ID5/INT0/f ED10/PME ED4/PMD2 011/PMD2/	RB7)4/RB8 3/RB9 /RB10		
1 2 3 4 5 6 7	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	1 1 1 1 1 1 1 2 2 2 2	5 F 6 7 7 1 8 7 9 \ 0 \ 1 F 2 F	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap	TED3/PM SCL1/CTE SDA1/CTI 10/CTED	RB6 1D5/INT0/f ED10/PME ED4/PMD2 011/PMD2/	RB7)4/RB8 3/RB9 /RB10		
1 2 3 4 5 6 7 8	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss		5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS	TED3/PM SCL1/CTE SDA1/CTI 10/CTED S/RPB11/F /RB12	RB6 ID5/INT0/I ED10/PME ED4/PMD2 011/PMD2 PMD1/RB	RB7)4/RB8 3/RB9 /RB10 11		
1 2 3 4 5 6 7 8 9	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4 4 /	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS PGEC2/TMS	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTE SDA1/CTED S/RPB11/F /RB12 S/CTPLS/	RB6 ID5/INT0/I ED10/PME ED4/PMD2 011/PMD2 PMD1/RB PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313	CTED5/PM	
1 2 3 4 5 6 7 8 9 10	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 F 6 1 7 1 8 1 9 \ 0 \ 1 F 2 F 3 / 4 / 5 (TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /ss /cap PGED2/RPB PGEC2/TMS AN12/PMD0 AN11/RPB13	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTI S/RPB11/F /RB12 3/CTPLS/ N10/C3IN	RB6 ID5/INT0/I ED10/PME ED4/PMD2 PMD1/RB PMRD/RE PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313 /SCK1/(WR/RB14
1 2 3 4 5 6 7 8 9 10 11	MCLR VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 VREF-/CVREF-/AN1/RPA1/CTED2/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 2	5 F 6 7 7 7 8 7 9 \ 0 \ 1 F 2 F 3 4 4 4 5 (6 4	TDI/RPB7/C TCK/RPB8/S TDO/RPB9/S /SS /CAP PGED2/RPB PGEC2/TMS AN12/PMD0. AN11/RPB13 CVREFOUT/A	TED3/PM SCL1/CTE SDA1/CTI SDA1/CTI S/RPB11/F /RB12 3/CTPLS/ N10/C3IN	RB6 ID5/INT0/I ED10/PME ED4/PMD2 PMD1/RB PMRD/RE PMRD/RE	RB7)4/RB8 3/RB9 /RB10 11 313 /SCK1/(WR/RB14

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

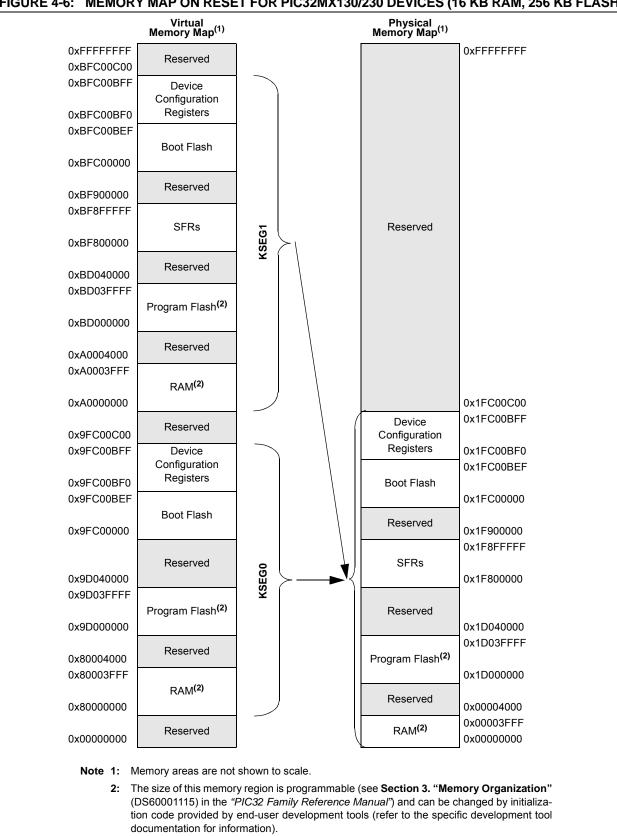
The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then

adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)


In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX1XX/2XX family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the PIC32MX1XX/2XX family core.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved in the PIC32MX1XX/2XX family core.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX1XX/2XX family core.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH)

TABLE 4-1: SFR MEMORY MAP

	Virtual A	ddress
Peripheral	Base	Offset Start
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-5		0x0600
Input Capture 1-5		0x2000
Output Compare 1-5		0x3000
IC1 and IC2		0x5000
SPI1 and SPI2		0x5800
UART1 and UART2		0x6000
PMP		0x7000
ADC	0xBF80	0x9000
CVREF		0x9800
Comparator		0xA000
CTMU		0xA200
Oscillator		0xF000
Device and Revision ID		0xF220
Peripheral Module Disable		0xF240
Flash Controller		0xF400
Reset		0xF600
PPS		0xFA04
Interrupts		0x1000
Bus Matrix		0x2000
DMA	0xBF88	0x3000
USB		0x5050
PORTA-PORTC		0x6000
Configuration	0xBFC0	0x0BF0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
31:24				NVMKE	Y<31:24>			
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
23:16				NVMKE	Y<23:16>			
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
15:8				NVMK	EY<15:8>			
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
7:0			•	NVMK	EY<7:0>			

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				NVMADI	DR<31:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				NVMADI	DR<23:16>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				NVMAD	DR<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				NVMAE)DR<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

(1)	IRQ	Vector		Interru	pt Bit Location		Persistent
Interrupt Source ⁽¹⁾	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
		Highes	st Natural C	order Priority	1		•
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 – External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E – Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 – Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 – Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 – External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 – Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E – Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 – Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 – Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 – External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 – Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E – Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 – Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 – Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 – External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 – Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E – Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 – Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 – Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 – External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 – Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E – Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 – Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 – Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 – ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM – Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC – Real-Time Clock and Calendar	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
FCE – Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 – Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 – Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
CMP3 – Comparator Interrupt	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	No
USB – USB Interrupts	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1E – SPI1 Fault	36	31	IFS1<4>	IEC1<4>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1RX – SPI1 Receive Done	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1TX – SPI1 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ROTRI	//<8:1>			
00.40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	ROTRIM<0>	_	_	_	—	_	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	_	—	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	—	_	_	—

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON (REFOCON<15>) bit is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

INE OIGTE								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	_	—	_	—	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_		_	_		_	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				CHSSIZ	<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHSSIZ	<7:0>			

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	—	_	_	—	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	_	—	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHDSIZ<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHDSIZ	<7:0>					

Legend:			
R = Readable bit	e bit W = Writable bit U = Unimplemented bit, read		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—				_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—				_	_	—
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		

Legend:

R = Readable bit	lable bit W = Writable bit		ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the Buffer Descriptor Table, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last Buffer Descriptor Direction Indicator bit
 - 1 = Last transaction was a transmit (TX) transfer
 - 0 = Last transaction was a receive (RX) transfer
- bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = The last transaction was to the ODD Buffer Descriptor bank
 - 0 = The last transaction was to the EVEN Buffer Descriptor bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF (U1IR<3>) bit is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—			_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—			_	_	-	_
15.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	-	—
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKPS<1:0>			TSYNC	TCS	

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled
 - 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to Timer1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 **TWIP:** Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

- 1 = Asynchronous write to the Timer1 register in progress
- 0 = Asynchronous write to Timer1 register is complete
- In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 **Unimplemented:** Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit
 - When TCS = 1:

This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6 Unimplemented: Read as '0'

bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits

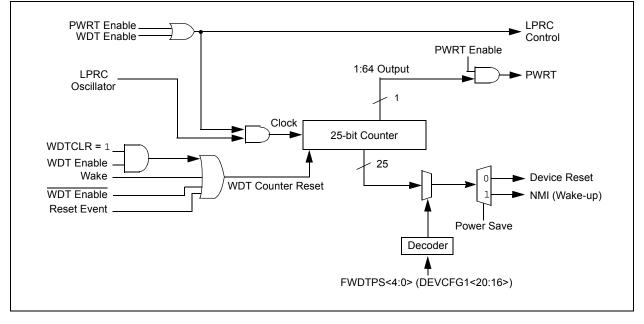
- 11 = 1:256 prescale value
- 10 = 1:64 prescale value
- 01 = 1:8 prescale value
- 00 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 3 Unimplemented: Read as '0'
 bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.
 bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

14.0 WATCHDOG TIMER (WDT)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

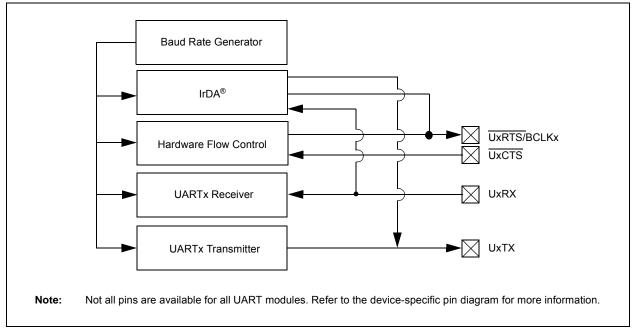
The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle mode

Figure 14-1 illustrates a block diagram of the WDT and Power-up timer.

FIGURE 14-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/36/44-pin Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

Key features of the UART module include:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

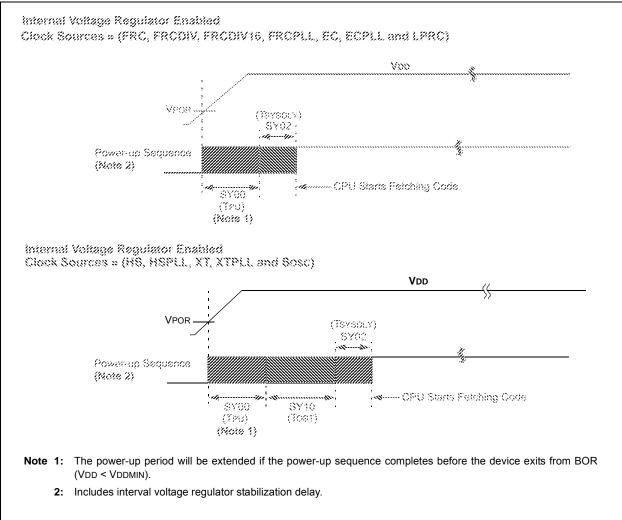
Figure 19-1 illustrates a simplified block diagram of the UART module.

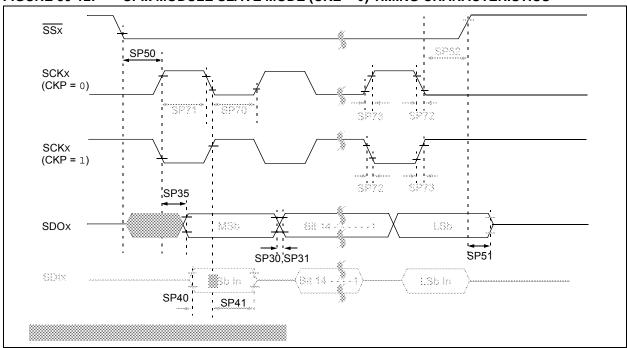
FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	-	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		—	_	_	-	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<1:0> ⁽²⁾		ALP ⁽²⁾		CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:


0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	


bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 functions as Chip Select
 - 01 = PMCS1 functions as PMA<14>
 - 00 = PMCS1 functions as PMA<14>
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

NOTES:

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—		ns	—
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	—		ns	—
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	—	_	15	ns	VDD > 2.7V
	TscL2DoV	SCKx Edge	—	—	20	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10		_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175		_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHA	RACTERIS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode (Note 1)	250		ns	
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—
			400 kHz mode	0	1000	ns	
			1 MHz mode (Note 1)	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus
			400 kHz mode	1.3		μS	must be free before a new
			1 MHz mode (Note 1)	0.5	-	μS	transmission can start
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN:978-1-5224-0471-2