

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f256d-50i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 36-PIN GENERAL PURPOSE DEVICES

36-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX110F016C PIC32MX120F032C PIC32MX130F064C PIC32MX150F128C

36

Pin #	Full Pin Name	Pi	in #	Full Pin Name
1	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	1	19	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	2	20	RPC9/CTED7/RC9
3	PGED4 ⁽⁴⁾ /AN6/RPC0/RC0	2	21	Vss
4	PGEC4 ⁽⁴⁾ /AN7/RPC1/RC1	2	22	VCAP
5	Vdd	2	23	Vdd
6	Vss	2	24	PGED2/RPB10/CTED11/PMD2/RB10
7	OSC1/CLKI/RPA2/RA2	2	25	PGEC2/TMS/RPB11/PMD1/RB11
8	OSC2/CLKO/RPA3/PMA0/RA3	2	26	AN12/PMD0/RB12
9	SOSCI/RPB4/RB4	2	27	AN11/RPB13/CTPLS/PMRD/RB13
10	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	2	28	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
11	RPC3/RC3	2	29	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
12	Vss	3	30	AVss
13	Vdd	3	31	AVdd
14	Vdd	з	32	MCLR
15	PGED3/RPB5/PMD7/RB5	3	33	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
16	PGEC3/RPB6/PMD6/RB6	3	34	VREF-/CVREF-/AN1/RPA1/CTED2/RA1
17	TDI/RPB7/CTED3/PMD5/INT0/RB7	3	35	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
18	TCK/RPB8/SCL1/CTED10/PMD4/RB8	3	36	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

TABLE 11: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES

44-PIN TQFP (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

44

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	VDD
7	VCAP	29	Vss
8	PGED2/RPB10/CTED11/PMD2/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/PMD1/RB11	31	OSC2/CLKO/RPA3/RA3
10	AN12/PMD0/RB12	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14	36	RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	VDD
19	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	41	PGED3/RPB5/PMD7/RB5
20	VREF-/CVREF-/AN1/RPA1/CTED2/RA1	42	PGEC3/RPB6/PMD6/RB6
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

44

1

TABLE 14: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX210F016D and PIC32MX220F032D devices.

5: Shaded pins are 5V tolerant.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 1-1	: PING	DUT I/O D		IONS (CO	NTINU	ED)	1	
		Pin Number ⁽¹⁾						
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description	
SDA1	15	18	19	1	I/O	ST	Synchronous serial data input/output for I2C1	
SCL2	4	7	2	24	I/O	ST	Synchronous serial clock input/output for I2C2	
SDA2	3	6	1	23	I/O	ST	Synchronous serial data input/output for I2C2	
TMS	19 (2)	22 ⁽²⁾	25 ⁽²⁾	12	1	ST	JTAG Test mode select pin	
_	11 ⁽³⁾	14 ⁽³⁾	15 (3)	12	1	_	STAG Test mode select pin	
TCK	14	17	18	13	I	ST	JTAG test clock input pin	
TDI	13	16	17	35	0	—	JTAG test data input pin	
TDO	15	18	19	32	0	—	JTAG test data output pin	
RTCC	4	7	2	24	0	ST	Real-Time Clock alarm output	
CVREF-	28	3	34	20	Ι	Analog	Comparator Voltage Reference (low)	
CVREF+	27	2	33	19	I	Analog	Comparator Voltage Reference (high)	
CVREFOUT	22	25	28	14	0	Analog	Comparator Voltage Reference output	
C1INA	4	7	2	24	I	Analog	Comparator Inputs	
C1INB	3	6	1	23	I	Analog		
C1INC	2	5	36	22	I	Analog		
C1IND	1	4	35	21	I	Analog		
C2INA	2	5	36	22	1	Analog	7	
C2INB	1	4	35	21	I	Analog		
C2INC	4	7	2	24	I	Analog		
C2IND	3	6	1	23	I	Analog		
C3INA	23	26	29	15	I	Analog		
C3INB	22	25	28	14	I	Analog	1	
C3INC	27	2	33	19	I	Analog	1	
C3IND	1	4	35	21	I	Analog	1	
C1OUT	PPS	PPS	PPS	PPS	0	—	Comparator Outputs	
C2OUT	PPS	PPS	PPS	PPS	0	—	1	
C3OUT	PPS	PPS	PPS	PPS	0	—	1	
		MOS compa itt Trigger in			•	Analog = O = Outp	Analog input P = Power but I = Input	

DINOUT 1/0 DECODIDITIONS (CONTINUED)

TTL = TTL input buffer PPS = Peripheral Pin Select Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

— = N/A

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/36/44pin Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF . Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF .
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX110/210 DEVICES (4 KB RAM, 16 KB FLASH)

TABLE 4-1: SFR MEMORY MAP

	Virtual A	ddress
Peripheral	Base	Offset Start
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-5		0x0600
Input Capture 1-5		0x2000
Output Compare 1-5		0x3000
IC1 and IC2		0x5000
SPI1 and SPI2		0x5800
UART1 and UART2		0x6000
PMP		0x7000
ADC	0xBF80	0x9000
CVREF		0x9800
Comparator		0xA000
CTMU		0xA200
Oscillator		0xF000
Device and Revision ID		0xF220
Peripheral Module Disable		0xF240
Flash Controller		0xF400
Reset		0xF600
PPS		0xFA04
Interrupts		0x1000
Bus Matrix		0x2000
DMA	0xBF88	0x3000
USB		0x5050
PORTA-PORTC		0x6000
Configuration	0xBFC0	0x0BF0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1	
31:24	—	—	Р	LLODIV<2:0	`	F	RCDIV<2:0>		
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	
23:16	—	SOSCRDY	PBDIVRDY	PBDIVRDY PBDIV<1:0>			PLLMULT<2:0>		
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
15:8	—		COSC<2:0>		—	NOSC<2:0>			
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0	
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN	

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Co	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-30 **Unimplemented:** Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = The Secondary Oscillator is running and is stable
 - 0 = The Secondary Oscillator is still warming up or is turned off
- bit 21 **PBDIVRDY:** Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note 1: This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

KE0131	REGISTER 10-1. OTOTGIR. 03B OTG INTERROFT STATUS REGISTER								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	-	—	—	-	-	—	-	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	-	—	—	-	-	—	-	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.6		_	-			—		—	
7.0	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	U-0	R/WC-0, HS	
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF	

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	pit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIF:** ID State Change Indicator bit
 - 1 = A change in the ID state was detected
 - 0 = No change in the ID state was detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1 ms, but different from last time
- 0 = USB line state has not been stable for 1 ms
- bit 4 ACTVIF: Bus Activity Indicator bit
 - 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
 - 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = A change on the session valid input was detected
 - 0 = No change on the session valid input was detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	_	—	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	_	_	_	—	_	—	_
7.0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
7:0	_		S	WDTWINEN	WDTCLR			

REGISTER 14-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration
 - 0 = Disable the WDT if it was enabled in software
- bit 14-7 Unimplemented: Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- bit 0 **WDTCLR:** Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- **Note 1:** A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 15-1: ICXCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)

ICM<2:0>: Input Capture Mode Select bits

bit 2-0

- 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
- 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
- 101 = Prescaled Capture Event mode every sixteenth rising edge
- 100 = Prescaled Capture Event mode every fourth rising edge
- 011 = Simple Capture Event mode every rising edge
- 010 = Simple Capture Event mode every falling edge
- 001 = Edge Detect mode every edge (rising and falling)
- 000 = Input Capture module is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			_	_	_	-	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_	_	-	-	_	_	—
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	15:8 BUSY I		<1:0>	INCM<1:0>		— MODE<1:		<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	<3:0>(1)		WAITE<1:0>(1)	

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

3			
R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address
- bit 10 Unimplemented: Read as '0'
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
 - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)
- bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
 - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
 - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
 - 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾

- 1111 = Wait of 16 Трв •
- . 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾ 11111111 = Alarm will trigger 256 times

> 00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess											Bits								6
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	PMD1	31:16	—	—	_	—	_		—	—	—	—	—	—		—	—	—	0000
F240	FIVIDI	15:0	-			CVRMD	Ι		—	CTMUMD	—	-		-			—	AD1MD	0000
5250	PMD2	31:16	—	—		—	_	_		—	—	—	—	—	-	—	—	—	0000
F250	FIVIDZ	15:0	—	_	_	—	_	_	—	—	_	_	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
F260	PMD3	31:16	_	-		_	-		_	_	_		_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIVIDS	15:0	_	-		_	-		_	_	_		_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
F270	PMD4	31:16	_	-		_	-		_	_	_		_	-		_	—	_	0000
F270	F IVID4	15:0	_	-		_	-		_	_	_		_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
F280	PMD5	31:16	_	-		_	-		_	USB1MD	_		_	-		_	I2C1MD	I2C1MD	0000
F200	FIVIDS	15:0	_	-		_	-		SPI2MD	SPI1MD	_		_	-		_	U2MD	U1MD	0000
F200	PMD6	31:16	_	—		—	_	_	_	—	—	_	—	_	_	—	—	PMPMD	0000
F290		15:0	—	_			_		—	_	—		—	-		—	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits

- 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
- 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
- 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)

bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits

- 11 = Primary Oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

TABLE 30-0.							
DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Parameter No. Typical ⁽²⁾ Max.			Units Conditions				
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)							
DC30a	1	1.5	mA	4 MHz (Note 3)			
DC31a	2	3	mA		10 MHz		
DC32a	4	6	mA	20 MHz (Note 3)			
DC33a	5.5	8	mA		30 MHz (Note 3)		
DC34a	7.5	11	mA	40 MHz			
DC37a	100	_	μA	-40°C		LPRC (31 kHz)	
DC37b	250	_	μA	+25°C	3.3V	(Note 3)	
DC37c	380		μA	+85°C	1		

TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- UCD DLL as sillator is dischard if the LLCD readule is implemented
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—		ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	—		ns	—	
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	_	15	ns	VDD > 2.7V	
	TscL2DoV	SCKx Edge	—	—	20	ns	VDD < 2.7V	
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10		_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175		_	ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range	Temp. Range	Max. Frequency		
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX1XX/2XX 28/36/44-pin Family		
MDC5	2.3-3.6V	-40°C to +85°C	50 MHz		

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 30-11 for BOR values.

TABLE 31-2: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS	5	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽³⁾	Max.	Units	Units Conditions				
Operating Current (IDD) (Note 1, 2)								
MDC24	25	37	mA	50 MHz				

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
- 3: RTCC and JTAG are disabled
- **4:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.

33.2 Package Details

This section provides the technical details of the packages.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits					
Number of Pins	N		28			
Pitch	e		0.65 BSC			
Overall Height	A	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1		1.25 REF			
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

APPENDIX A: REVISION HISTORY

Revision A (May 2011)

This is the initial released version of this document.

Revision B (October 2011)

The following two global changes are included in this revision:

- All packaging references to VLAP have been changed to VTLA throughout the document
- All references to VCORE have been removed
- All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed
- V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables

This revision includes the addition of the following devices:

- PIC32MX130F064B
- PIC32MX130F064C
- PIC32MX130F064D
- PIC32MX150F128B
- PIC32MX150F128CPIC32MX150F128D
- PIC32MX250F128C
 PIC32MX250F128D

PIC32MX230F064B

PIC32MX230F064C

PIC32MX230F064D

PIC32MX250F128B

Text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-1.

Section	Update Description				
"32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio	Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2).				
and Graphics Interfaces, USB, and Advanced Analog"	Added the SPDIP package reference (see Table 1, Table 2, and " Pin Diagrams ").				
	Added the new devices to the applicable pin diagrams.				
	Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices.				
1.0 "Device Overview"	Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1).				
	Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1).				
2.0 "Guidelines for Getting Started with 32-bit Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).				

TABLE A-1: MAJOR SECTION UPDATES