

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx130f256d-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 13: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES

44-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	VDD
7	VCAP	29	Vss
8	PGED2/RPB10/CTED11/PMD2/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/PMD1/RB11	31	OSC2/CLKO/RPA3/RA3
10	AN12/PMD0/RB12	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4 ⁽⁴⁾ /TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14	36	RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	VDD
19	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0	41	PGED3/RPB5/PMD7/RB5
20	Vref-/CVref-/AN1/RPA1/CTED2/RA1	42	PGEC3/RPB6/PMD6/RB6
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

44

1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

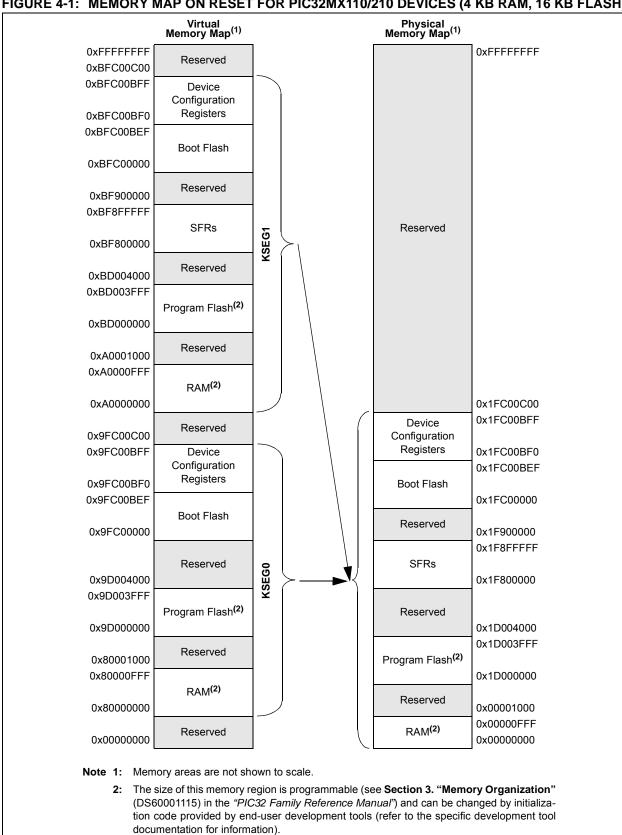
2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/36/44pin Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

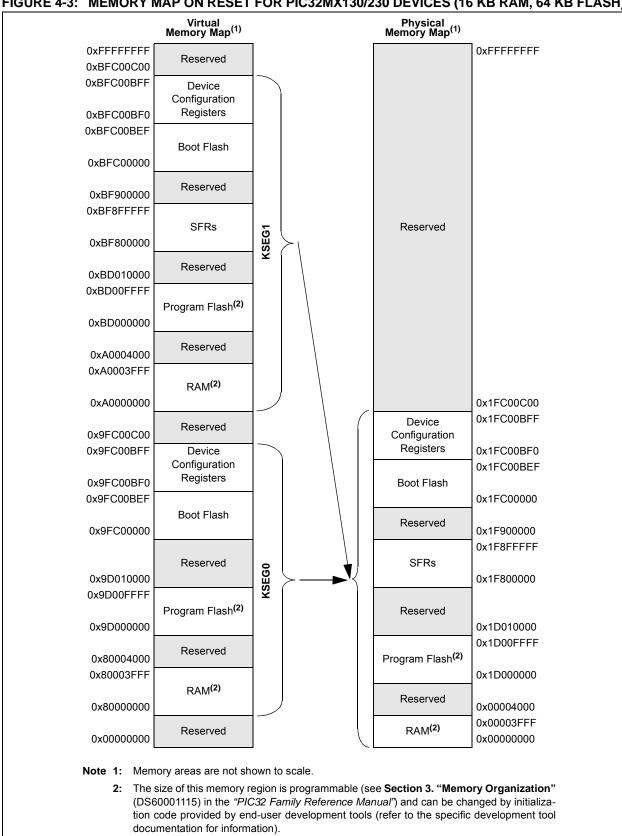
- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented


Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors


The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX110/210 DEVICES (4 KB RAM, 16 KB FLASH)

FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 64 KB FLASH)

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess		ē					-			Bi	ts								s
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3280	DCH2CPTR	31:16	—	_	_	_		_		—		_	_			_	_		0000
5200	DONZOFIK	15:0																	0000
3290	DCH2DAT	31:16	_	_	—	—		_		—	_	_	—	_	—	_	_		0000
3290	DCHZDAI	15:0	_		_	_		-		-				CHPDA	AT<7:0>				0000
2240	DCH3CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
32A0	DCH3CON	15:0											l<1:0>	0000					
3280	2B0 DCH3ECON 31:16 CHAIRQ<7:0>											OOFF							
5200		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_	FF00
32C0	DCH3INT	31:16	—	—	—	—	-	_	-	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0200		15:0	—			_	—	_	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16 15:0								CHSSA	<31:0>								0000
		31:16																	0000
32E0	DCH3DSA	15:0								CHDSA	<31:0>								0000
0050	00100017	31:16		_			_	_	_							_		_	0000
32FU	DCH3SSIZ	15:0								CHSSIZ	2<15:0>								0000
2200	DCH3DSIZ	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—	_	—	_	0000
3300	DCH3D3IZ	15:0								CHDSIZ	2<15:0>								0000
3310	DCH3SPTR	31:16	—	_	—	_				_	—		_		_				0000
3310	DOI IJOF I K	15:0								CHSPTF	۲<15:0>								0000
3320	DCH3DPTR	31:16	—	—	—	—	_	_	_	—	_	_	—	—	—	_	—	_	0000
0020		15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHCSIZ	2<15:0>								0000
3340	DCH3CPTR	31:16	_	—	—	—	_	—	_	—	—	—	—	—	—	—	—	_	0000
		15:0								CHCPT	≺<15:0>								0000
3350	DCH3DAT	31:16	—	_	—	_	_	_	—	_	_	—	—	-	— T :7 0:	—	—	—	0000
<u> </u>		15:0	—	—	—	—	—	—	—	_				CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the EVEN Buffer Descriptor banks
 - 0 = Even/Odd buffer pointers are not Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit⁽⁵⁾

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—				—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—		—	-			—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	—	_	-	-	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

U									
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low-Speed Enable Indicator bit

1 = Next token command to be executed at Low-Speed

0 = Next token command to be executed at Full-Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31:24	—	—	—	_	—	_	—								
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
23.10	—	—	—	_	—	_	—								
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
15.0	—	—	—	-	—	_	—	-							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0							
				FRML	<7:0>										

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTE	N 15-1. IX	CON. TIFL			LOISTEN			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—		—	-	—	-	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	-	—	_	_	_	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,3)	_	SIDL ⁽⁴⁾	_	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	—	TCS ⁽³⁾	—

REGISTER 13-1: TXCON: TYPE B TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled
 - 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12-8 Unimplemented: Read as '0'

- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾
 - When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

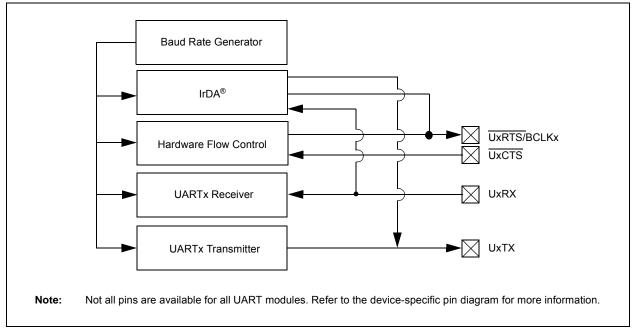
bit 6-4 **TCKPS<2:0>:** Timer Input Clock Prescale Select bits⁽³⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value

000 = 1:1 prescale value

- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3, and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/36/44-pin Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

Key features of the UART module include:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART module.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

19.1 UART Control Registers

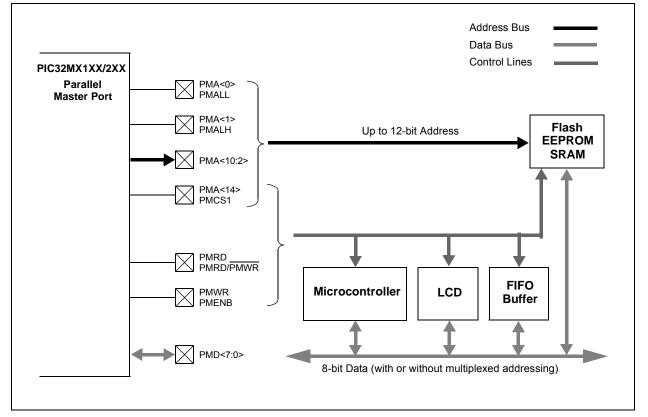
TABLE 19-1: UART1 AND UART2 REGISTER MAP

np for point	ess		6								Bi	ts								6		
6000 0 MODE 15.0 ON - SIDL IREN RTSMD - UEN<1:0> WAKE LPBACK ABAUD RXINV BRGH PDEL<1:0> STSL 0.00 610 U1STA(1) 31:16 - - - - ADM_EN VERSE LPBACK ABAUD RXINV BRGH PDEL<1:0> STSL 0.00 600 U1STA(1) 15.0 UTXINV URXEN UTXENK UTXEN TRM URXEN TRMT URXEN ADDEN RIDE PERR PERR OER URXDA 0100 600 U1TXREG 31:16 - - - - - - - - 0000 6100 U1RXREG 31:16 - - - - - - - - - 0000 6100 U1RXREG 31:16 - - - - - - - - 0000	Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
610 610 <td>6000</td> <td></td> <td>31:16</td> <td></td> <td></td> <td>_</td> <td>_</td> <td>—</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>—</td> <td></td> <td></td> <td>—</td> <td>_</td> <td>_</td> <td>_</td> <td>0000</td>	6000		31:16			_	_	—	_		_	_	—			—	_	_	_	0000		
600 UTXIST 15.0 UTXIST UTXINV UTXRNV	0000	OTWODE	15:0	ON		SIDL	IREN	RTSMD	—	UEN	-	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	L<1:0>	STSEL	0000		
15:0 15:0 01XBE 0	6010	111STA(1)	31:16	_	_	_	—	—	_	ADM_EN ADDR<7:0>				2<7:0>				0000				
600 UTXRE 1 - - - - - - - - - - 000 0000	0010	UIUIA	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6020		31:16	—	-	—	_	—	—	-	—	_	—	—	_	_	_	—	_	0000		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0020	UTTAKLG	15:0	_		_		_	-					Tra	nsmit Regis	ster				0000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6030		31:16	_		_		_	-		_						0000					
600 11 1.50 <	0030	UINAREG	15:0	_		_		_	-					Re	ceive Regis	ster				0000		
15:0 Bale Rate Generator Present 1000 6200 16:0 $$	6040	01	31:16	-		-		_	-		—		_	-		-		-		0000		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00+0	0 IDIXO	15:0							Bau	d Rate Gene	erator Pres	caler				0					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6200	112MODE(1)	31:16	_	_	_	—	—	_	_	—	-	—	_	-	—	_	—	_	0000		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0200	OZINODL	15:0	ON		SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6210	112974(1)	31:16	_		_		_	-		ADM_EN				ADDR	<7:0>				0000		
6220 U2TXREG 15:0 - - - - - - - - 000 6230 U2RXREG 31:16 - - - - - - - - 0000 6230 U2RXREG 31:16 - - - - - - - - 0000 6240 U2BRG(1) 31:16 - - - - - - - 0000	0210	0231A. /	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
150 - - - - - - - - 000 620 U2RXEG 31:16 - - - - - - - - 000 620 U2BRG(1) 31:16 - - - - - - - - - 000 6240 U2BRG(1) 31:16 - - - - - - - - 000	6220		31:16	_		_		_	-		_		_	_		-		_		0000		
6230 U2RXREG - - - - - - - 0000 6240 U2BRG(1) 31:16 - - - - - - - 0000	0220	UZTARLO	15:0	_		_		_	_					Tra	nsmit Regis	ster				0000		
150 - - - - - - - 0000 6240 U2BRG ⁽¹⁾ 31:16 - - - - - - - - 0000	6230		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000		
	0230	UZNAREG	15:0 — — — — — — — Receive Register							0000												
02240 02000 15:0 Baud Rate Generator Prescaler 0000	6240		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000		
	0240	UZDRG."	15:0	Baud Rate Generator Prescaler 0000																		

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

20.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128),
	which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Key features of the PMP module include:

- Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single Chip Select
 - up to 12 address lines without Chip Select
- One Chip Select line
- Programmable strobe options
 - Individual read and write strobes or;
 - Read/write strobe with enable strobe
- · Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- · Legacy parallel slave port support
- · Enhanced parallel slave support
- Address support
- 4-byte deep auto-incrementing buffer
- · Programmable Wait states
- · Selectable input voltage levels

Figure 20-1 illustrates the PMP module block diagram.

FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

23.1 Comparator Control Registers

TABLE 23-1: COMPARATOR REGISTER MAP

ess		0								Bi	its								
Virtua (BI Re Re	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset	
4000	A000 CM1CON	31:16	_	_	-	_	-	_		-	—	_	-	—	—	—	_	—	0000
A000		15:0	ON	COE	CPOL	_	-	_	_	COUT	EVPO	L<1:0>	-	CREF	_	—	CCH	<1:0>	00C3
A010	CM2CON	31:16	_	_		_		_			_	_		_	_	_	_	_	0000
7010	CIVIZCON	15:0	ON	COE	CPOL		-		-	COUT	EVPO	L<1:0>	-	CREF	—	—	CCH	<1:0>	00C3
4020	CM2CON	31:16	-				-		-	-	—	—	-	_	—	—		—	0000
A020	A020 CM3CON	15:0	ON	COE	CPOL	_	—	_	—	COUT	EVPO	L<1:0>	—	CREF	_	—	CCH	<1:0>	00C3
A060	CMSTAT	31:16	_	—	_	_	-	_	_	-	—	_	-	_	_	—	_	—	0000
7000	CIVISTAI	15:0	_	_	SIDL	_		_			-	_		_		C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

REGISTER 27-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is only available on PIC32MX2XX devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R	R	R	R	R	R	R	R
31:24	VER<3:0> ⁽¹⁾				DEVID<27:24> ⁽¹⁾			
00.40	R	R	R	R	R	R	R	R
23:16	DEVID<23:16> ⁽¹⁾							
15:8	R	R	R	R	R	R	R	R
	DEVID<15:8> ⁽¹⁾							
	R	R	R	R	R	R	R	R
7:0	DEVID<7:0>(1)							

REGISTER 27-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID bits⁽¹⁾

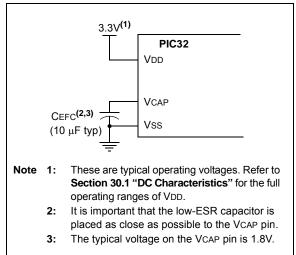
Note 1: See the "*PIC32 Flash Programming Specification*" (DS60001145) for a list of Revision and Device ID values.

27.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX 28/36/44-pin Family devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX 28/36/44-pin Family family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 30.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

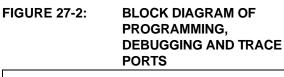

27.3.1 ON-CHIP REGULATOR AND POR

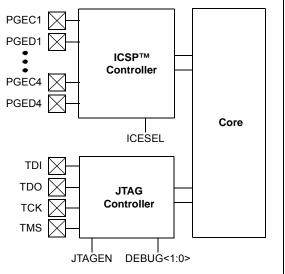
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

27.3.2 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX 28/36/44-pin Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 30.1 "DC Characteristics"**.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR


27.4 Programming and Diagnostics


PIC32MX1XX/2XX 28/36/44-pin Family devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

Figure 27-2 illustrates a block diagram of the programming, debugging, and trace ports.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

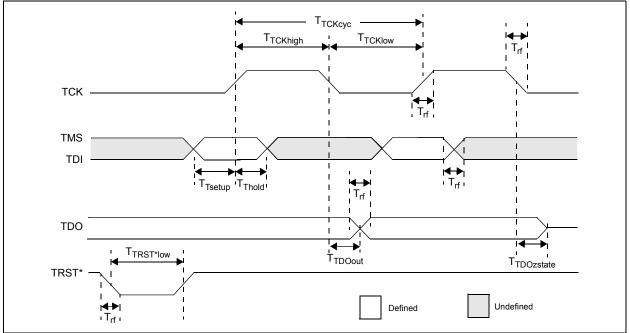
- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

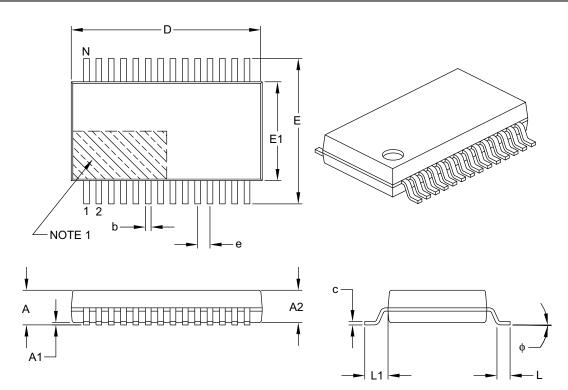
MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

FIGURE 30-23: EJTAG TIMING CHARACTERISTICS

TABLE 30-42: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$			
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions
EJ1	Ттсксус	TCK Cycle Time	25		ns	_
EJ2	Ттскнідн	TCK High Time	10	_	ns	—
EJ3	TTCKLOW	TCK Low Time	10	_	ns	_
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	_	ns	_
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	-	ns	—
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	-	5	ns	—
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_
EJ8	TTRSTLOW	TRST Low Time	25		ns	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	_	ns	_


Note 1: These parameters are characterized, but not tested in manufacturing.

33.2 Package Details

This section provides the technical details of the packages.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	e		0.65 BSC		
Overall Height	A	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

Revision J (April 2016)

This revision includes the following major changes as described in Table A-8, as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE A-8: MAJOR SECTION UPDATES

Section	Update Description		
"32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog"	The PIC32MX270FDB device and Note 4 were added to TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" .		
2.0 "Guidelines for Getting Started with 32-bit MCUs"	EXAMPLE 2-1: "Crystal Load Capacitor Calculation" was updated.		
30.0 "Electrical Characteristics"	Parameter DO50a (Csosc) was removed from the Capacitive Loading Requirements on Output Pins AC Characteristics (see Table 30-16).		
"Product Identification System"	The device mapping was updated to include type B for Software Targeting.		