

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f128bt-50i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 10: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

			44 1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4/TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4/TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

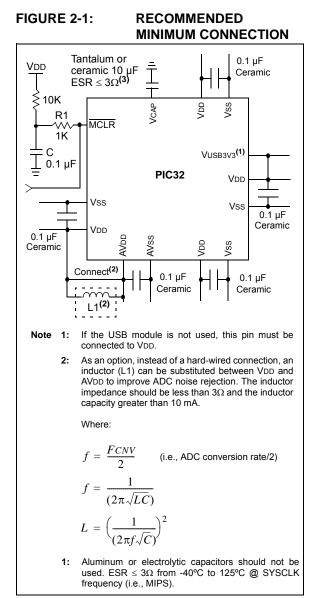

5: Shaded pins are 5V tolerant.

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

		Pin Nu	nber ⁽¹⁾							
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description			
AN0	27	2	33	19		Analog	Analog input channels.			
AN1	28	3	34	20	I	Analog				
AN2	1	4	35	21		Analog				
AN3	2	5	36	22		Analog				
AN4	3	6	1	23	I	Analog				
AN5	4	7	2	24	I	Analog				
AN6	_	_	3	25	I	Analog				
AN7	_	_	4	26	I	Analog				
AN8	_	_	_	27	I	Analog				
AN9	23	26	29	15	I	Analog				
AN10	22	25	28	14	I	Analog				
AN11	21	24	27	11	I	Analog				
AN12	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾ 11 ⁽³⁾	10 ⁽²⁾ 36 ⁽³⁾	1	Analog	*			
CLKI	6	9	7	30	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.			
CLKO	7	10	8	31	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.			
OSC1	6	9	7	30	I	ST/CMOS	-			
OSC2	7	10	8	31	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
SOSCI	8	11	9	33	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.			
SOSCO	9	12	10	34	0	—	32.768 kHz low-power oscillator crystal output.			
REFCLKI	PPS	PPS	PPS	PPS		ST	Reference Input Clock			
REFCLKO	PPS	PPS	PPS	PPS	0	—	Reference Output Clock			
IC1	PPS	PPS	PPS	PPS		ST	Capture Inputs 1-5			
IC2	PPS	PPS	PPS	PPS	1	ST	1			
IC3	PPS	PPS	PPS	PPS	1	ST	1			
IC4	PPS	PPS	PPS	PPS		ST	1			
IC5	PPS	PPS	PPS	PPS		ST	1			
	ST = Schm	MOS compa itt Trigger in input buffer			•	O = Outp	Analog inputP = PowerutI = Inputeripheral Pin Select— = N/A			

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability. 2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

2.2.1 BULK CAPACITORS

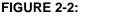
The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

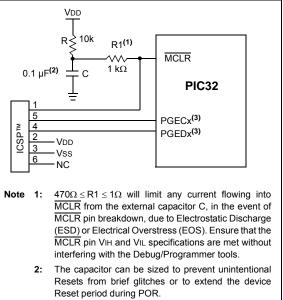
2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **30.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin


The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- · Device programming and debugging


Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

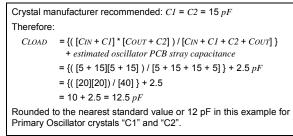
Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

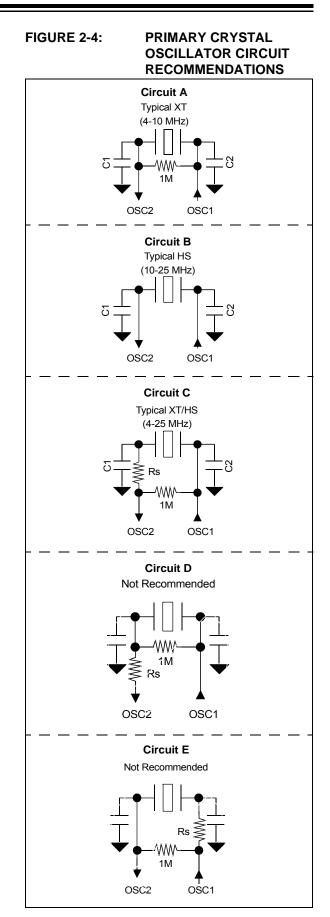

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION



The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R	R	R	R	R	R	R	R			
31:24	BMXPFMSZ<31:24>										
00.40	R	R	R	R	R	R	R	R			
23:16	BMXPFMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXPFMSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXPF	MSZ<7:0>						

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00004000 = Device has 16 KB Flash 0x00008000 = Device has 32 KB Flash 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	Bit 31/23/15/7			Bit Bit 28/20/12/4 27/19/11/3		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R	R	R	R	R	R	R	R			
31:24	BMXBOOTSZ<31:24>										
00.40	R	R	R	R	R	R	R	R			
23:16	BMXBOOTSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXBOOTSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXBO	OTSZ<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB boot Flash

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	_	—	—		_						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	—	—	—	—	—	—	—	—					
45.0	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0					
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾		_						
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0	_	—		—		NVMOF	P<3:0>						

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

011 31-10	Unimplemented. Read as 0
bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation is complete or inactive
bit 14	WREN: Write Enable bit
	This is the only bit in this register reset by a device Reset.
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
bit 13	WRERR: Write Error bit ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set and cleared by the hardware.
	1 = Low-voltage event is active
hit 10 1	0 = Low-voltage event is not active
bit 10-4 bit 3-0	Unimplemented: Read as '0'
0-6 110	NVMOP<3:0>: NVM Operation bits These bits are writable when WREN = 0.
	1111 = Reserved
	•
	•
	0111 = Reserved 0110 = No operation
	0101 = Program Flash Memory (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
	0010 = No operation
	0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected 0000 = No operation

Note 1: This bit is cleared by setting NVMOP == `b0000, and initiating a Flash operation (i.e., WR).

6.1 Reset Control Registers

TABLE 6-1: RESET CONTROL REGISTER MAP

ess	Register Name ⁽¹⁾	Bits												s					
Virtual Address (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F600	RCON	31:16	_	_	_		—	_		—	_	_		_		-	-	_	0000
1 000	ROOM	15:0	_		-		_	-	CMR	VREGS	EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR	xxxx(2)
E610	RSWRST	31:16		—	-	—	—	—	—	—		—	—	_	—	_	—	—	0000
1010	N31/K31	15:0	_	_	_	-	_	—		—	_	_	-	_	_	_	-	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24	— RODIV<14:8> ^(1,3)												
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	RODIV<7:0> ^(1,3)												
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC					
15:8	ON	_	SIDL	OE	RSLP ⁽²⁾	_	DIVSWEN	ACTIVE					
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0						ROSEL	.<3:0>(1)						

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable	HS = Hardware Settable	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-16	RODIV<14:0> Reference Clock Divider bits ^(1,3)
	The value selects the reference clock divider bits. See Figure 8-1 for information.
bit 15	ON: Output Enable bit
	1 = Reference Oscillator module is enabled
	0 = Reference Oscillator module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Peripheral Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
 - 0 =Continue module operation when the device enters lide mode
- bit 12 **OE:** Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on REFCLKO pin
 - 0 = Reference clock is not driven out on REFCLKO pin
- bit 11 RSLP: Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator module output continues to run in Sleep
 - 0 = Reference Oscillator module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - **2:** This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

USB Control Registers 10.1

TABLE 10-1: USB REGISTER MAP

ess											Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	(4)	31:16	_	—	—	—	—	—		_	—	—	—	—	—	—	_	—	000
5040	UTUTUIK()	15:0		_	_	—	_	_		_	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	1	VBUSVDIF	000
5050	U10TGIE	31:16	—	—	—	—	—	—	—	—	—		—	—	—	—	_	—	000
0000	OTOTOLE	15:0	—	—	—	—	—	—	—	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	000
5060	U10TGSTAT ⁽³⁾	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0000	0101001/11	15:0	—	—	—	—	—	—	—	—	ID		LSTATE	—	SESVD	SESEND	_	VBUSVD	000
5070	U10TGCON	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0070	UTOTOOON	15:0	_	—	—	—	—	—	_	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	000
5080	U1PWRC	31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
0000	on wite	15:0	_	—	—	—	—	—	_	—	UACTPND ⁽⁴⁾		—	USLPGRD	USBBUSY	—	USUSPEND	USBPWR	000
		31:16	_	—	—	—	—	—	_	—			—	—		—	_		000
5200	U1IR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	000
		04.40																DETACHIF	000
5210	U1IE	31:16	_	_						_	—	—		—	—	—	—		000
5210	OTIE	15:0	—	—		—	—	—	—	—	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	000
		31:16	_	_	_	_		_			_	_	_	_	_	_	_		000
5220	U1EIR ⁽²⁾	15:0	_	_	_	_	_	_	_	_	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF	000
		31:16	_	_		_	_	_	_	_	_		_	_	_	_	_		000
5230	U1EIE	15:0	_	_	_	_	_	_	_	_	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE EOFEE	PIDEE	000
	(2)	31:16	_	_		_	_			_		_		_	_		_	_	000
5240	U1STAT ⁽³⁾	15:0	_	_	_	_	_	_		_			PT<3:0>		DIR	PPBI	_	_	000
		31:16	_		_	_	_	_		_	_	_			_	_	_	_	000
5250	U1CON												PKTDIS					USBEN	000
		15:0		—	—	—	—	—		—	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	000
5260	U1ADDR	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	000
5260	UTADDR	15:0	_	_	_	_	_	—	_	_	LSPDEN			DE	VADDR<6:	0>			000
5070		31:16	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	000
5270	U1BDTP1	15:0	—			—				_			BC) TPTRL<15:9>	>				0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

2: This register does not have associated SET and INV registers.

This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 10-3: U1OTGSTAT: USB OTG STATUS REGISTER

				• • • • • • •				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	-	—	—	—	_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—	—	—	_	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—	—	—	_	—		—
7:0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0
7.0	ID		LSTATE	_	SESVD	SESEND	_	VBUSVD

Legend:

Logona.							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a "type B" cable has been inserted into the USB receptacle
 - 0 = A "type A" OTG cable has been inserted into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (SE0 (U1CON<6>) bit and JSTATE (U1CON<7>)) bit has been stable for previous 1 ms 0 = USB line state (SE0 and JSTATE) has not been stable for previous 1 ms

bit 4 Unimplemented: Read as '0'

- bit 3 SESVD: Session Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A or B device
 - 0 = VBUS voltage is below Session Valid on the A or B device
- bit 2 SESEND: B-Device Session End Indicator bit
 - 1 = VBUS voltage is below Session Valid on the B device
 - 0 = VBUS voltage is above Session Valid on the B device

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVD: A-Device VBUS Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A device
 - 0 = VBUS voltage is below Session Valid on the A device

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 11-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT4	INT4R	INT4R<3:0>	0000 = RPA0 0001 = RPB3
T2CK	T2CKR	T2CKR<3:0>	0010 = RPB4 0011 = RPB15 0100 = RPB7
IC4	IC4R	IC4R<3:0>	0101 = RPC7 ⁽²⁾ 0110 = RPC0 ⁽¹⁾ 0111 = RPC5 ⁽²⁾
SS1	SS1R	SS1R<3:0>	1000 = Reserved
REFCLKI	REFCLKIR	REFCLKIR<3:0>	: 1111 = Reserved
INT3	INT3R	INT3R<3:0>	0000 = RPA1 0001 = RPB5
ТЗСК	T3CKR	T3CKR<3:0>	0010 = RPB1 0011 = RPB11
IC3	IC3R	IC3R<3:0>	0100 = RPB8 0101 = RPA8 ⁽²⁾
U1CTS	U1CTSR	U1CTSR<3:0>	0110 = RPC8 ⁽²⁾ 0111 = RPA9 ⁽²⁾
U2RX	U2RXR	U2RXR<3:0>	1000 = Reserved
SDI1	SDI1R	SDI1R<3:0>	• 1111 = Reserved
INT2	INT2R	INT2R<3:0>	0000 = RPA2
T4CK	T4CKR	T4CKR<3:0>	
IC1	IC1R	IC1R<3:0>	0011 = RPB13 0100 = RPB2
IC5	IC5R	IC5R<3:0>	0101 = RPC6 ⁽²⁾
U1RX	U1RXR	U1RXR<3:0>	0110 = RPC1 ⁽¹⁾ 0111 = RPC3 ⁽¹⁾
U2CTS	U2CTSR	U2CTSR<3:0>	1000 = Reserved
SDI2	SDI2R	SDI2R<3:0>	•
OCFB	OCFBR	OCFBR<3:0>	• 1111 = Reserved
INT1	INT1R	INT1R<3:0>	0000 = RPA3 0001 = RPB14
T5CK	T5CKR	T5CKR<3:0>	0010 = RPB0 0011 = RPB10 0100 = RPB9
IC2	IC2R	IC2R<3:0>	0101 = RPC9 ⁽¹⁾ 0110 = RPC2 ⁽²⁾ 0111 = RPC4 ⁽²⁾
SS2	SS2R	SS2R<3:0>	1000 = Reserved
OCFA	OCFAR	OCFAR<3:0>	• • 1111 = Reserved

Note 1: This pin is not available on 28-pin devices.

2: This pin is only available on 44-pin devices.

Input Capture Control Registers 15.1

	LE 15-1:	IN	PUT C	APTURE	E 1-INPU	JT CAP	FURE 5	REGIST	ER MAI	2							
ess										Bi	ts						
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1
2000	IC1CON ⁽¹⁾	31:16		—	—	—	_	—	—	—	—	—	_	—	—	_	—
2000	101001	15:0	ON	—	SIDL	—	—		FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>
2010	IC1BUF	31:16 15:0								IC1BUF	<31:0>						
2200	IC2CON ⁽¹⁾	31:16		—	—	—	—	—	—	_	—	—	—	—	_		-
2200	102001	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>
2210	IC2BUF	31:16 15:0								IC2BUF	<31:0>						
2400	IC3CON ⁽¹⁾	31:16	-	—	_	_	_	-	—	_	—	-	_	—	—		—
2400	103001	15.0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>
2410	IC3BUF	31:16 15:0								IC3BUF	<31:0>						
2600	IC4CON ⁽¹⁾	31:16		_	_	—	_	_	_		_	—	—	—	_		—
2000	104001	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>
2610	IC4BUF	31:16 15:0								IC4BUF	<31:0>						
2800	IC5CON ⁽¹⁾	31:16	-	—	—	_	_	_	—	—	—	_		—	—		—
2000	1000014	15:0	ON	—	SIDL	_	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>
2810	IC5BUF	31:16 15:0								IC5BUF	<31:0>						

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

All Resets

0000

0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx

16/0

—

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess											Bits								6
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	PMD1	31:16	—	—	_	—	_	_	_	—	—	—	—	—	—	—	—	—	0000
F240	FIVIDI	15:0	-			CVRMD	Ι			CTMUMD	—	-		-	—		—	AD1MD	0000
5250	PMD2	31:16	—	—		—	_	_		—	—	—	—	—	—	—	—	—	0000
F250	FIVIDZ	15:0	-			—	Ι			—	—	-		-	—	CMP3MD	CMP2MD	CMP1MD	0000
F260	PMD3	31:16	_	-		_	-			_	_		_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIVIDS	15:0	_	-		_	-			_	_		_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
F270	PMD4	31:16	_	-		_	-			_	_		_	-	_	_	—	_	0000
F270	F IVID4	15:0	_	-		_	-			_	_		_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
F280	PMD5	31:16	_	-		_	-			USB1MD	_		_	-	_	_	I2C1MD	I2C1MD	0000
F200	FIVIDS	15:0	_	-		_	-		SPI2MD	SPI1MD	_		_	-	_	_	U2MD	U1MD	0000
F200	PMD6	31:16	_	—		—	_	_		_	—	_	—	_	—	—	—	PMPMD	0000
F290	I WD0	15:0	—	_	_	—	_	_	-	—	—	_	_	_	—	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components.

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

27.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

In addition, the DEVID register (Register 27-6) provides device and revision information.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

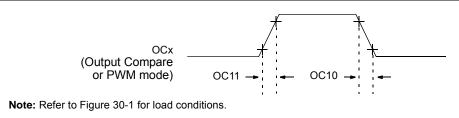
29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

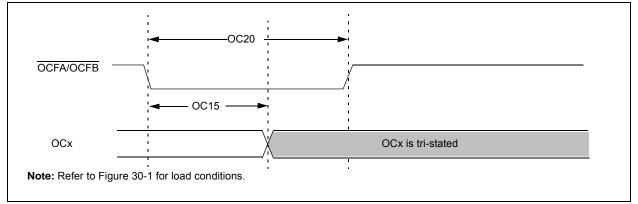

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter DO32			
OC11	TccR	OCx Output Rise Time	—	—		ns	See parameter DO31			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 30-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAF	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min Typical ⁽²⁾		Max	Units	Conditions				
OC15	TFD	Fault Input to PWM I/O Change	—	—	50	ns	_				
OC20	TFLT	Fault Input Pulse Width	50	—		ns	—				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

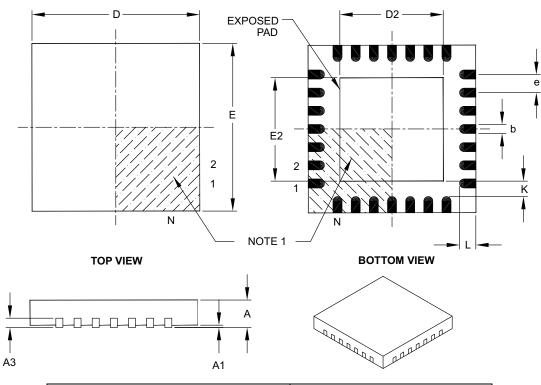
TABLE 31-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		_	ns	_	
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	—		ns	—	
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 31-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHA	RACTERIS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol Characteristics			Typical	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2			ns	_	
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	_	_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

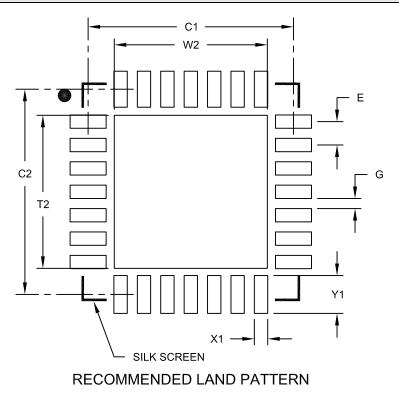
	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A