

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f128ct-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 36-PIN GENERAL PURPOSE DEVICES

36-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX110F016C PIC32MX120F032C PIC32MX130F064C PIC32MX150F128C

36

			I
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	19	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	20	RPC9/CTED7/RC9
3	PGED4 ⁽⁴⁾ /AN6/RPC0/RC0	21	Vss
4	PGEC4 ⁽⁴⁾ /AN7/RPC1/RC1	22	VCAP
5	VDD	23	VDD
6	Vss	24	PGED2/RPB10/CTED11/PMD2/RB10
7	OSC1/CLKI/RPA2/RA2	25	PGEC2/TMS/RPB11/PMD1/RB11
8	OSC2/CLKO/RPA3/PMA0/RA3	26	AN12/PMD0/RB12
9	SOSCI/RPB4/RB4	27	AN11/RPB13/CTPLS/PMRD/RB13
10	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	28	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
11	RPC3/RC3	29	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
12	Vss	30	AVss
13	VDD	31	AVdd
14	VDD	32	MCLR
15	PGED3/RPB5/PMD7/RB5	33	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
16	PGEC3/RPB6/PMD6/RB6	34	VREF-/CVREF-/AN1/RPA1/CTED2/RA1
17	TDI/RPB7/CTED3/PMD5/INT0/RB7	35	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
18	TCK/RPB8/SCL1/CTED10/PMD4/RB8	36	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R	R	R	R	R	R	R	R			
31:24		BMXDRMSZ<31:24>									
00.40	R	R	R	R	R	R	R	R			
23:10	BMXDRMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXDRMSZ<15:8>										
7:0	R	R	R	R	R	R	R	R			
				BMXDR	MSZ<7:0>						

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00001000 = Device has 4 KB RAM 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	—	BMXPUPBA<19:16>					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
15:8	BMXPUPBA<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				BMXPU	PBA<7:0>					

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits This value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R	R	R	R	R	R	R	R			
31:24	BMXPFMSZ<31:24>										
00.40	R	R	R	R R R		R	R				
23.10	BMXPFMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXPFMSZ<15:8>										
7:0	R	R	R	R	R	R	R	R			
				BMXPF	MSZ<7:0>						

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00004000 = Device has 16 KB Flash 0x00008000 = Device has 32 KB Flash 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R	R	R	R	R	R	R	R				
31:24		BMXBOOTSZ<31:24>										
22.16	R	R	R	R	R	R	R	R				
23.10	BMXBOOTSZ<23:16>											
45.0	R	R	R	R	R	R	R	R				
15:8	BMXBOOTSZ<15:8>											
7:0	R	R	R	R	R	R	R	R				
				BMXBO	OTSZ<7:0>							

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB boot Flash

Interrupt Source ⁽¹⁾		Vector		Persistent			
interrupt Source ^v	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
U1E – UART1 Fault	39	32	IFS1<7>	IEC1<7>	IPC8<4:2>	IPC8<1:0>	Yes
U1RX – UART1 Receive Done	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>	Yes
U1TX – UART1 Transfer Done	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1B – I2C1 Bus Collision Event	42	33	IFS1<10>	IEC1<10>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1S – I2C1 Slave Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1M – I2C1 Master Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes
CNA – PORTA Input Change Interrupt	45	34	IFS1<13>	IEC1<13>	IPC8<20:18>	IPC8<17:16>	Yes
CNB – PORTB Input Change Interrupt	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>	Yes
CNC – PORTC Input Change Interrupt	47	34	IFS1<15>	IEC1<15>	IPC8<20:18>	IPC8<17:16>	Yes
PMP – Parallel Master Port	48	35	IFS1<16>	IEC1<16>	IPC8<28:26>	IPC8<25:24>	Yes
PMPE – Parallel Master Port Error	49	35	IFS1<17>	IEC1<17>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2E – SPI2 Fault	50	36	IFS1<18>	IEC1<18>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2RX – SPI2 Receive Done	51	36	IFS1<19>	IEC1<19>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2TX – SPI2 Transfer Done	52	36	IFS1<20>	IEC1<20>	IPC9<4:2>	IPC9<1:0>	Yes
U2E – UART2 Error	53	37	IFS1<21>	IEC1<21>	IPC9<12:10>	IPC9<9:8>	Yes
U2RX – UART2 Receiver	54	37	IFS1<22>	IEC1<22>	IPC9<12:10>	IPC9<9:8>	Yes
U2TX – UART2 Transmitter	55	37	IFS1<23>	IEC1<23>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2B – I2C2 Bus Collision Event	56	38	IFS1<24>	IEC1<24>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2S – I2C2 Slave Event	57	38	IFS1<25>	IEC1<25>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2M – I2C2 Master Event	58	38	IFS1<26>	IEC1<26>	IPC9<20:18>	IPC9<17:16>	Yes
CTMU – CTMU Event	59	39	IFS1<27>	IEC1<27>	IPC9<28:26>	IPC9<25:24>	Yes
DMA0 – DMA Channel 0	60	40	IFS1<28>	IEC1<28>	IPC10<4:2>	IPC10<1:0>	No
DMA1 – DMA Channel 1	61	41	IFS1<29>	IEC1<29>	IPC10<12:10>	IPC10<9:8>	No
DMA2 – DMA Channel 2	62	42	IFS1<30>	IEC1<30>	IPC10<20:18>	IPC10<17:16>	No
DMA3 – DMA Channel 3	63	43	IFS1<31>	IEC1<31>	IPC10<28:26>	IPC10<25:24>	No
		Lowes	st Natural O	rder Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	_	_	_			_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—			—
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7:0							FRMH<2:0>	

REGISTER 10-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Bit Bit Bit Bit Bit Bit Bit Bit 30/22/14/6 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 Range 31/23/15/7 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ___ ___ ____ ____ ____ ____ ___ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 ____ ___ ____ ____ ____ ____ ____ ___ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 _ ___ ____ ____ ____ ___ ____ ____ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PID < 3:0 > (1)EP<3:0>

REGISTER 10-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

1101 = SETUP (TX) token type transaction

- 1001 = IN (RX) token type transaction
- 0001 = OUT (TX) token type transaction

Note: All other values are reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS			Bits																
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5404		31:16	-	—	-	-	-	—	—	—	-	—	—	—	—	—	-	—	0000
FA04	INTIR	15:0	_	_	_	—	—	_	_	—	_	_	_	_		INT1F	R<3:0>		0000
EVUS		31:16		—	_	—	—	_	_	_		—	_	_	_	_	—		0000
FAUO	INTZR	15:0	_	—	—	—	—	—	—	—	_	—	—	_		INT2F	R<3:0>		0000
EAOC		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
TAUC	INTOK	15:0	_	_				_	—		_	_	—	_		INT3F	R<3:0>		0000
EA10		31:16	_	_				_	—		_	_	—	_	_	—	—	_	0000
1710		15:0	_	—	—	—	—	—	—	—	—	—	—	—		INT4F	R<3:0>		0000
FA18	T2CKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17(10	120101	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T2CK	R<3:0>		0000
FA1C	T3CKR	31:16	_	—	—	—	—	—	—	—	-	—	—	—	—		—	—	0000
TAIC	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T3CK	R<3:0>		0000
EA20	TACKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1720	140111	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T4CK	R<3:0>		0000
EA24		31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1724	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T5CK	R<3:0>		0000
FA28		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1 A20	ICIK	15:0	_	_	—			_	_		_	_	_			IC1R	<3:0>		0000
FA2C	IC2P	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1720	10211	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
EA30	IC3P	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
EA34		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17.04		15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
EA38	IC5R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	1001	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1740		15:0	—	—	—	—	—	—	—	—	—	—	—	—		OCFA	R<3:0>		0000
FAAC	OCEBR	31:16	_	—	—	_	_	—	—	_	_	—	—	—	—	—	—	—	0000
1740		15:0	_	—	—	—	—	—	—	—	_	—	—	—		OCFB	R<3:0>		0000
EA 50		31:16	_	—	-	—	-	—	—	—	_	—	—	—	—	—	—	—	0000
FA5U	UIKAR	15:0	_	_	-	-		_	_	_	_	_	_	—		U1RX	R<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15.6	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP	—	—	—
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKP	S<1:0>		TSYNC	TCS	_

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled
 - 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to Timer1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 **TWIP:** Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

- 1 = Asynchronous write to the Timer1 register in progress
- 0 = Asynchronous write to Timer1 register is complete
- In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 Unimplemented: Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit
 - When TCS = 1:

This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6 Unimplemented: Read as '0'

bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits

- 11 = 1:256 prescale value
- 10 = 1:64 prescale value
- 01 = 1:8 prescale value
- 00 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character) bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is Idle 0 = Data is being received PERR: Parity Error Status bit (read-only) bit 3 1 = Parity error has been detected for the current character 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected **OERR:** Receive Buffer Overrun Error Status bit. bit 1 This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and the RSR to an empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)

- 1 = Receive buffer has data, at least one more character can be read
- 0 = Receive buffer is empty

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	DMCON	31:16		_	—	—	—	—	—	—		—	—			—	_	—	0000
7000	FINCON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	_	CS1P	—	WRSP	RDSP	0000
7010		31:16	—	_	—	—	_	—	_	—	_	—	_	_	_	_	_	—	0000
7010	PININODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	_	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	=<1:0>	0000
		31:16	—	_	_	—	_	_	_	_	_	—	_	_	_	—	_	—	0000
7020	PMADDR	45.0		CS1															0000
		15:0	_	ADDR14	_	_	_					1	ADDR<10:0	>					
7000		31:16								DATAOU	T -04-05								0000
7030	PIVIDOUT	15:0								DATAOU	1<31.0>								0000
7040		31:16									1-21:05								0000
7040	PIVIDIN	15:0								DATAIN	1<31.0>								0000
7050		31:16	_	_	_	—	_	_	-	_	_	_	-	_	_	-	_	_	0000
7050	PMAEN	15:0	_	PTEN14	_	_	_						PTEN<10:0	>		· · /			
7000	DMOTAT	31:16		_	_	_	_	_	—	—	_	—	—	_	—	—	_	_	0000
1060	PINSTAL	15:0	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

22.0 **10-BIT ANALOG-TO-DIGITAL** CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed

FIGURE 22-1:

- Up to 13 analog input pins
- External voltage reference input pins
- · One unipolar, differential Sample and Hold Amplifier (SHA)
- Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. Figure 22-2 illustrates a block diagram of the ADC conversion clock period. The 10-bit ADC has up to 13 analog input pins, designated AN0-AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

5: This selection is only used with CTMU capacitive and time measurement.

ADC1 MODULE BLOCK DIAGRAM

24.1 Comparator Voltage Reference Control Register

ess										Bits										
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset	
0000	CVRCON	31:16	_	—	_	_	_	—	_	_	_	—	-	_	-	—	—	_	0000	
9000	CVRCON	15:0	ON	_		_	_	_	_	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- · Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 25-1.

© 2011-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P	
31:24	—	—	—	CP	—	—	—	BWP	
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P	
23:10	—			—	—		PWP<8:6>(3)		
45.0	R/P	R/P	R/P	R/P	R/P	R/P	r-1	r-1	
15:8			PWP<	<5:0>			—	—	
7.0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P	
7:0		—	—	ICESEL	<1:0> (2)	JTAGEN ⁽¹⁾	DEBUG<1:0>		

REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: Write '0'

bit 30-29 Reserved: Write '1'

- bit 28 **CP:** Code-Protect bit
 - Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-25 Reserved: Write '1'

bit 24 **BWP:** Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

1 = Boot Flash is writable

0 = Boot Flash is not writable

- bit 23-19 Reserved: Write '1'
- **Note 1:** This bit sets the value for the JTAGEN bit in the CFGCON register.
 - 2: The PGEC4/PGED4 pin pair is not available on all devices. Refer to the "**Pin Diagrams**" section for availability.
 - 3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

DC CHA	RACTERIS	TICS	Standar Operatir	$\begin{array}{ll} \mbox{Standard Operating Conditions: } 2.3V \mbox{ to } 3.6V \mbox{ (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions								
Power-Down Current (IPD) (Notes 1, 5)												
DC40k	44	70	μA	-40°C								
DC40I	44	70	μA	+25°C	Pasa Power Down Current							
DC40n	168	259	μA	+85°C	Base Fower-Down Guiteni							
DC40m	335	536	μA	+105°C								
Module	Differential	Current										
DC41e	5	20	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)							
DC42e	23	50	μA	3.6V RTCC + Timer1 w/32 kHz Crystal: ∆IRTCC (Note 3)								
DC43d	1000	1100	μA	3.6V ADC: ∆IADC (Notes 3,4)								

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8

• CPU is in Sleep mode, and SRAM data memory Wait states = 1

• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set

• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD

• RTCC and JTAG are disabled

2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS ⁽¹⁾				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽²⁾			Min.	Typical	Max.	Units	Conditions		
TA10	Т⊤хН	TxCK High Time	Synchronou with presca		Synchronous, with prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	—	ns	Must also meet parameter TA15
			Asynchror with presc	nous, aler	10	—		ns	—		
TA11	ΤτxL	TxCK Low Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 ТРв)/N] + 25 ns	—		ns	Must also meet parameter TA15		
			Asynchronous, with prescaler		10 —			ns	—		
TA15	ΤτχΡ	TxCK Input Period	Synchronous, with prescaler		Synchronous, with prescaler		[(Greater of 25 ns or 2 TPB)/N] + 30 ns	-	_	ns	VDD > 2.7V
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	—	_	ns	VDD < 2.7V		
			Asynchronous, with prescaler		20	-	_	ns	VDD > 2.7V (Note 3)		
					50	-	_	ns	VDD < 2.7V (Note 3)		
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by set the TCS (T1CON<1>) bi		r etting bit)	32	_	100	kHz	_		
TA20	TCKEXTMRL	Delay from External TxC Clock Edge to Timer Increment		СК	_	_	1	Трв	_		

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 30-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standar (unless Operatir	d Operating Condition otherwise stated) ng temperature -40°C -40°C	I IS: 2.3V C ≤ TA ≤ C ≤ TA ≤	/ to 3.6 (+85°C (+105°	V 5 for Industrial C for V-temp	
Param. No.	Symbol	Characteristics ⁽¹⁾			Min.	Max.	Max. Units Conditions		
TB10	ТтхН	TxCK High Time	Synchron prescaler	ous, with	[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	N = prescale value (1, 2, 4, 8,
TB11	ΤτxL	TxCK Low Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter TB15	16, 32, 64, 256)
TB15	ΤτχΡ	TxCK Input	X Synchrono ut prescaler		[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V	
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V	
TB20	TCKEXTMRL	Delay from Clock Edge	External T e to Timer I	xCK	—	1	Трв	_	-

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 30-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard O (unless oth Operating te	perating Conditions: 2.3V erwise stated) emperature $-40^{\circ}C \le TA \le +$ $-40^{\circ}C \le TA \le +$	to 3.6V 85°C foi 105°C fo	^r Industri or V-tem	al p		
Param. No.	Symbol	Charac	cteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TCCL	ICx Input	t Low Time	[(12.5 ns or 1 ТРв)/N] + 25 ns	-	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)	
IC11	ТссН	ICx Input	t High Time	[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.		
IC15	TCCP	ICx Input	t Period	[(25 ns or 2 Трв)/N] + 50 ns	_	ns	_		

Note '	1:	These	parameters a	are charac	terized, bu	it not f	tested in	manufacturing	
--------	----	-------	--------------	------------	-------------	----------	-----------	---------------	--

TABLE 30-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

АС СНА		ISTICS	$ \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM11	Twr	PMWR Pulse Width	_	1 Трв	_	_	_	
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	_	2 Трв	_	_	_	
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	—	—	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 30-40: OTG ELECTRICAL SPECIFICATIONS

АС СНА	RACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation		
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—		
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—		
USB318	VDIFS	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met		
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—		
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—		
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3		
USB322	Vон	Voltage Output High	2.8		3.6	V	1.425 k Ω load connected to ground		

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES: