Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 50MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT | | Number of I/O | 35 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 32K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 13x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-TQFP | | Supplier Device Package | 44-TQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f128d-50i-pt | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### TABLE 7: PIN NAMES FOR 36-PIN GENERAL PURPOSE DEVICES **36-PIN VTLA (TOP VIEW)**(1,2,3,5) PIC32MX110F016C PIC32MX120F032C PIC32MX130F064C PIC32MX150F128C 36 1 | | T | |-------|--------------------------------------| | Pin # | Full Pin Name | | 1 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 | | 2 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 | | 3 | PGED4 ⁽⁴⁾ /AN6/RPC0/RC0 | | 4 | PGEC4 ⁽⁴⁾ /AN7/RPC1/RC1 | | 5 | VDD | | 6 | Vss | | 7 | OSC1/CLKI/RPA2/RA2 | | 8 | OSC2/CLKO/RPA3/PMA0/RA3 | | 9 | SOSCI/RPB4/RB4 | | 10 | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 | | 11 | RPC3/RC3 | | 12 | Vss | | 13 | VDD | | 14 | VDD | | 15 | PGED3/RPB5/PMD7/RB5 | | 16 | PGEC3/RPB6/PMD6/RB6 | | 17 | TDI/RPB7/CTED3/PMD5/INT0/RB7 | | 18 | TCK/RPB8/SCL1/CTED10/PMD4/RB8 | | Pin# | Full Pin Name | |------|--| | 19 | TDO/RPB9/SDA1/CTED4/PMD3/RB9 | | 20 | RPC9/CTED7/RC9 | | 21 | Vss | | 22 | VCAP | | 23 | VDD | | 24 | PGED2/RPB10/CTED11/PMD2/RB10 | | 25 | PGEC2/TMS/RPB11/PMD1/RB11 | | 26 | AN12/PMD0/RB12 | | 27 | AN11/RPB13/CTPLS/PMRD/RB13 | | 28 | CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14 | | 29 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 30 | AVss | | 31 | AVDD | | 32 | MCLR | | 33 | VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 | | 34 | VREF-/CVREF-/AN1/RPA1/CTED2/RA1 | | 35 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 | | 36 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 | Note - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions. - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. - 3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: This pin function is not available on PIC32MX110F016C and PIC32MX120F032C devices. - 5: Shaded pins are 5V tolerant. ### **Table of Contents** | 1.0 | Device Overview | 19 | |-------|--|-----| | 2.0 | Guidelines for Getting Started with 32-bit MCUs. | | | 3.0 | CPU. | | | 4.0 | Memory Organization | | | 5.0 | Flash Program Memory | | | 6.0 | Resets | | | 7.0 | Interrupt Controller | | | 8.0 | Oscillator Configuration | 73 | | 9.0 | Direct Memory Access (DMA) Controller | 83 | | 10.0 | USB On-The-Go (OTG) | 103 | | 11.0 | I/O Ports | 127 | | 12.0 | Timer1 | 143 | | 13.0 | Timer2/3, Timer4/5 | 147 | | 14.0 | Watchdog Timer (WDT) | 153 | | 15.0 | Input Capture | 157 | | | Output Compare | | | 17.0 | Serial Peripheral Interface (SPI) | 165 | | 18.0 | Inter-Integrated Circuit (I ² C) | | | 19.0 | Universal Asynchronous Receiver Transmitter (UART) | 181 | | | Parallel Master Port (PMP) | | | | Real-Time Clock and Calendar (RTCC) | | | 22.0 | 10-bit Analog-to-Digital Converter (ADC) | 209 | | 23.0 | Comparator | | | 24.0 | Comparator Voltage Reference (CVREF) | 223 | | 25.0 | Charge Time Measurement Unit (CTMU) | 227 | | 26.0 | Power-Saving Features | 233 | | 27.0 | Special Features | 239 | | 28.0 | Instruction Set | | | 29.0 | Development Support | 253 | | | Electrical Characteristics | | | | 50 MHz Electrical Characteristics | | | | DC and AC Device Characteristics Graphs | | | | Packaging Information | | | | Aicrochip Web Site | | | | omer Change Notification Service | | | | omer Support | | | Produ | uct Identification System | 342 | Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority. TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES | F | Description | |-----------|---| | Exception | Description | | Reset | Assertion MCLR or a Power-on Reset (POR). | | DSS | EJTAG debug single step. | | DINT | EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register. | | NMI | Assertion of NMI signal. | | Interrupt | Assertion of unmasked hardware or software interrupt signal. | | DIB | EJTAG debug hardware instruction break matched. | | AdEL | Fetch address alignment error. Fetch reference to protected address. | | IBE | Instruction fetch bus error. | | DBp | EJTAG breakpoint (execution of SDBBP instruction). | | Sys | Execution of SYSCALL instruction. | | Вр | Execution of BREAK instruction. | | RI | Execution of a reserved instruction. | | CpU | Execution of a coprocessor instruction for a coprocessor that is not enabled. | | CEU | Execution of a Corextend instruction when Corextend is not enabled. | | Ov | Execution of an arithmetic instruction that overflowed. | | Tr | Execution of a trap (when trap condition is true). | | DDBL/DDBS | EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value). | | AdEL | Load address alignment error. Load reference to protected address. | | AdES | Store address alignment error. Store to protected address. | | DBE | Load or store bus error. | | DDBL | EJTAG data hardware breakpoint matched in load data compare. | ### 3.3 Power Management The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods. # 3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see **Section 26.0** "Power-Saving Features". ### 3.4 EJTAG Debug Support The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine. The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used. #### **REGISTER 5-1:** NVMCON: PROGRAMMING CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|----------------------|-------------------|------------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | - | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | - | _ | _ | | 45.0 | R/W-0 | R/W-0 | R-0 | R-0 | R-0 | U-0 | U-0 | U-0 | | 15:8 | WR | WREN | WRERR ⁽¹⁾ | LVDERR(1) | LVDSTAT ⁽¹⁾ | _ | _ | _ | | 7.0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7:0 | _ | _ | _ | _ | | NVMOF | P<3:0> | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 WR: Write Control bit This bit is writable when WREN = 1 and the unlock sequence is followed. 1 = Initiate a Flash operation. Hardware clears this bit when the operation completes 0 = Flash operation is complete or inactive bit 14 WREN: Write Enable bit This is the only bit in this register reset by a device Reset. 1 = Enable writes to WR bit and enables LVD circuit 0 = Disable writes to WR bit and disables LVD circuit bit 13 WRERR: Write Error bit⁽¹⁾ This bit is read-only and is automatically set by hardware. 1 = Program or erase sequence did not complete successfully 0 = Program or erase sequence completed normally LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled)⁽¹⁾ bit 12 This bit is read-only and is automatically set by hardware. 1 = Low-voltage detected (possible data corruption, if WRERR is set) 0 = Voltage level is acceptable for programming bit 11 **LVDSTAT:** Low-Voltage Detect Status bit (LVD circuit must be enabled)⁽¹⁾ This bit is read-only and is automatically set and cleared by the hardware. 1 = Low-voltage event is active 0 = Low-voltage event is not active bit 10-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation bits These bits are writable when WREN = 0. 1111 = Reserved 0111 = Reserved 0110 = No operation 0101 = Program Flash Memory (PFM) erase operation: erases PFM, if all pages are not write-protected 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected 0010 = No operation 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected 0000 = No operation Note 1: This bit is cleared by setting NVMOP == `b0000, and initiating a Flash operation (i.e., WR). #### REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24:24 | R/W-0 | 31:24 | IFS31 | IFS30 | IFS29 | IFS28 | IFS27 | IFS26 | IFS25 | IFS24 | | 23:16 | R/W-0 | 23.10 | IFS23 | IFS22 | IFS21 | IFS20 | IFS19 | IFS18 | IFS17 | IFS16 | | 15.0 | R/W-0 | 15:8 | IFS15 | IFS14 | IFS13 | IFS12 | IFS11 | IFS10 | IFS09 | IFS08 | | 7:0 | R/W-0 | 7.0 | IFS07 | IFS06 | IFS05 | IFS04 | IFS03 | IFS02 | IFS01 | IFS00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IFS31-IFS00: Interrupt Flag Status bits 1 = Interrupt request has occurred 0 = No interrupt request has occurred Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions. #### REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | R/W-0 | 31:24 | IEC31 | IEC30 | IEC29 | IEC28 | IEC27 | IEC26 | IEC25 | IEC24 | | 23:16 | R/W-0 | 23.10 | IEC23 | IEC22 | IEC21 | IEC20 | IEC19 | IEC18 | IEC17 | IEC16 | | 15:8 | R/W-0 | 15.6 | IEC15 | IEC14 | IEC13 | IEC12 | IEC11 | IEC10 | IEC09 | IEC08 | | 7:0 | R/W-0 | 7.0 | IEC07 | IEC06 | IEC05 | IEC04 | IEC03 | IEC02 | IEC01 | IEC00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IEC31-IEC00: Interrupt Enable bits 1 = Interrupt is enabled0 = Interrupt is disabled **Note:** This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions. ## 8.1 Oscillator Control Regiters ### TABLE 8-1: OSCILLATOR CONTROL REGISTER MAP | ess | | Bit Range | Bits | | | | | | | | | | | v) | | | | | | |-----------------------------|---------------------------------|-----------|------------------|-------|----------|-------|-----------------|-------|----------|---------|---------------------|----------------------|-------|--------------|------|-----------------------|--------|-------|------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | F000 | OSCCON | 31:16 |) — PLLODIV<2:0> | | |)> | FRCDIV<2:0> — : | | | SOSCRDY | PBDIVRDY PBDIV<1:0> | | PL | PLLMULT<2:0> | | x1xx(2) | | | | | F000 | OSCCON | 15:0 | _ | | COSC<2:0 |)> | _ | | NOSC<2:0 | > | CLKLOCK | ULOCK ⁽³⁾ | SLOCK | SLPEN | CF | UFRCEN ⁽³⁾ | SOSCEN | OSWEN | xxxx(2) | | E010 | OSCTUN | 31:16 | _ | | _ | _ | - | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | 0000 | | F010 | OSCIUN | 15:0 | _ | | _ | _ | - | _ | _ | _ | _ | _ | | | TUN | V<5:0> | | | 0000 | | - 000 | DEEOCON | 31:16 | _ | | | | | | | | RODIV<1 | 14:0> | | | | | | | 0000 | | F020 | REFOCON | 15:0 | ON | | SIDL | OE | RSLP | _ | DIVSWEN | ACTIVE | _ | _ | _ | _ | | ROSE | L<3:0> | | 0000 | | F000 | DEEOTRIM | 31:16 | | | | R | OTRIM<8:0 |)> | | | | _ | - | 1 | _ | _ | | _ | 0000 | | F030 | REFOTRIM | 15:0 | _ | _ | _ | _ | 1 | ı | _ | _ | | _ | _ | 1 | _ | _ | ı | _ | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. PIC32MX1XX/2XX 28/36/44-PIN FAMILY 2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset. 3: This bit is only available on PIC32MX2XX devices. TABLE 11-1: INPUT PIN SELECTION | Peripheral Pin | [pin name]R SFR | [pin name]R bits | [pin name]R Value to
RPn Pin Selection | |----------------|-----------------|------------------|--| | INT4 | INT4R | INT4R<3:0> | 0000 = RPA0
0001 = RPB3 | | T2CK | T2CKR | T2CKR<3:0> | 0010 = RPB4
0011 = RPB15
0100 = RPB7 | | IC4 | IC4R | IC4R<3:0> | 0101 = RPC7 ⁽²⁾
0110 = RPC0 ⁽¹⁾
0111 = RPC5 ⁽²⁾ | | SS1 | SS1R | SS1R<3:0> | 1000 = Reserved | | REFCLKI | REFCLKIR | REFCLKIR<3:0> | 1111 = Reserved | | INT3 | INT3R | INT3R<3:0> | 0000 = RPA1
0001 = RPB5 | | T3CK | T3CKR | T3CKR<3:0> | 0010 = RPB1
0011 = RPB11 | | IC3 | IC3R | IC3R<3:0> | 0100 = RPB8
0101 = RPA8 ⁽²⁾ | | U1CTS | U1CTSR | U1CTSR<3:0> | 0110 = RPC8 ⁽²⁾
0111 = RPA9 ⁽²⁾ | | U2RX | U2RXR | U2RXR<3:0> | 1000 = Reserved | | SDI1 | SDI1R | SDI1R<3:0> | 1111 = Reserved | | INT2 | INT2R | INT2R<3:0> | 0000 = RPA2 | | T4CK | T4CKR | T4CKR<3:0> | 0001 = RPB6
0010 = RPA4 | | IC1 | IC1R | IC1R<3:0> | 0011 = RPB13
0100 = RPB2 | | IC5 | IC5R | IC5R<3:0> | 0101 = RPC6 ⁽²⁾ | | U1RX | U1RXR | U1RXR<3:0> | 0110 = RPC1 ⁽¹⁾
0111 = RPC3 ⁽¹⁾ | | U2CTS | U2CTSR | U2CTSR<3:0> | 1000 = Reserved | | SDI2 | SDI2R | SDI2R<3:0> | | | OCFB | OCFBR | OCFBR<3:0> | • 1111 = Reserved | | INT1 | INT1R | INT1R<3:0> | 0000 = RPA3
0001 = RPB14 | | T5CK | T5CKR | T5CKR<3:0> | 0010 = RPB0
0011 = RPB10
0100 = RPB9 | | IC2 | IC2R | IC2R<3:0> | 0101 = RPC9 ⁽¹⁾
0110 = RPC2 ⁽²⁾
0111 = RPC4 ⁽²⁾ | | SS2 | SS2R | SS2R<3:0> | 1000 = Reserved | | OCFA | OCFAR | OCFAR<3:0> | 1111 = Reserved | Note 1: This pin is not available on 28-pin devices. ^{2:} This pin is only available on 44-pin devices. | ▢ | |---------------| | DS60001 | | O | | 0 | | 0 | | 0 | | _ | | \rightarrow | | 168J- | | ω | | <u>_</u> | | <u> </u> | | page | | Æ | | × | | ťν | | _ | | 135 | | ~ | | ٠. | | | | | | TABLE 11-5: | PORTC REGISTER MA | 0 | |-------------|-------------------|---| | IADLE II-J. | PURIUREGISTER WA | _ | | ess | | | | | | | | | | | | Bits | | | | | | | 10 | |-----------------------------|-----------------------------------|-----------|-------|-------|-------|-------|-------|-------|----------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|----------------------|-------------------------|----------|----------|------------| | Virtual Address
(BF88_#) | Register
Name ^(1,2) | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6200 | ANSELC | 31:16 | ı | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | ı | ı | 0000 | | 0200 | ANSELC | 15:0 | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | ANSC3 ⁽⁴⁾ | ANSC2 ⁽³⁾ | ANSC1 | ANSC0 | 000F | | 6210 | TRISC | 31:16 | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | _ | _ | _ | 0000 | | 0210 | TRISC | 15:0 | I | _ | _ | _ | _ | | TRISC9 | TRISC8 ⁽³⁾ | TRISC7 ⁽³⁾ | TRISC6 ⁽³⁾ | TRISC5 ⁽³⁾ | TRISC4 ⁽³⁾ | TRISC3 | TRISC2 ⁽³⁾ | TRISC1 | TRISC0 | 03FF | | 6220 | PORTC | 31:16 | I | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | | | | | | 0000 | | 0220 | PORTC | 15:0 | I | _ | _ | _ | _ | _ | RC9 | RC8 ⁽³⁾ | RC7 ⁽³⁾ | RC6 ⁽³⁾ | RC5 ⁽³⁾ | RC4 ⁽³⁾ | RC3 | RC2 ⁽³⁾ | RC1 | RC0 | xxxx | | 6230 | LATC | 31:16 | I | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0230 | LKI | 15:0 | I | _ | _ | _ | _ | _ | LATC9 | LATC8 ⁽³⁾ | LATC7 ⁽³⁾ | LATC6 ⁽³⁾ | LATC5 ⁽³⁾ | LATC4 ⁽³⁾ | LATC3 | LATC2 ⁽³⁾ | LATC1 | LATC0 | xxxx | | 6240 | ODCC | 31:16 | I | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0240 | ODCC | 15:0 | _ | _ | _ | _ | _ | _ | ODCC9 | ODCC8 ⁽³⁾ | ODCC7 ⁽³⁾ | ODCC6 ⁽³⁾ | ODCC5 ⁽³⁾ | ODCC4 ⁽³⁾ | ODCC3 | ODCC2 ⁽³⁾ | ODCC1 | ODCC0 | 0000 | | 6250 | CNPUC | 31:16 | I | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0250 | CNPUC | 15:0 | I | _ | _ | _ | _ | _ | CNPUC9 | CNPUC8 ⁽³⁾ | CNPUC7 ⁽³⁾ | CNPUC6 ⁽³⁾ | CNPUC5 ⁽³⁾ | CNPUC4 ⁽³⁾ | CNPUC3 | CNPUC2 ⁽³⁾ | CNPUC1 | CNPUC0 | 0000 | | 0000 | CNIDDO | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6260 | CNPDC | 15:0 | _ | _ | _ | _ | _ | _ | CNPDC9 | CNPDC8 ⁽³⁾ | CNPDC7 ⁽³⁾ | CNPDC6 ⁽³⁾ | CNPDC5 ⁽³⁾ | CNPDC4 ⁽³⁾ | CNPDC3 | CNPDC2 ⁽³⁾ | CNPDC1 | CNPDC0 | 0000 | | 6070 | CNICONIC | 31:16 | I | _ | _ | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0270 | CNCONC | 15:0 | ON | _ | SIDL | _ | _ | _ | _ | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 6200 | CNENC | 31:16 | I | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | _ | _ | _ | | 0000 | | 6280 | CNENC | 15:0 | I | _ | _ | _ | _ | _ | CNIEC9 | CNIEC8 ⁽³⁾ | CNIEC7 ⁽³⁾ | CNIEC6(3) | CNIEC5 ⁽³⁾ | CNIEC4 ⁽³⁾ | CNIEC3 | CNIEC2 ⁽³⁾ | CNIEC1 | CNIEC0 | 0000 | | 6200 | CNICTATO | 31:16 | I | _ | _ | _ | _ | _ | _ | | _ | | _ | | _ | _ | _ | | 0000 | | 0290 | CNSTATC | 15:0 | | _ | _ | _ | _ | _ | CNSTATC9 | CNSTATC8(3) | CNSTATC7 ⁽³⁾ | CNSTATC6 ⁽³⁾ | CNSTATC5 ⁽³⁾ | CNSTATC4(3) | CNSTATC3 | CNSTATC2 ⁽³⁾ | CNSTATC1 | CNSTATCO | 0000 | ${f x}$ = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for PIC32MX1XX/2XX 28/36/44-PIN FAMILY - PORTC is not available on 28-pin devices. 2: - This bit is only available on 44-pin devices. - This bit is only available on USB-enabled devices with 36 or 44 pins. TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP | sss | | | | | | | | | | Ві | ts | | | | | | | | | |-----------------------------|----------------------|---------------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|-----------|----------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | FB00 | RPA0R | 31:16
15:0 | _ | | _ | | | | _ | | | _ | _ | _ | - | —
RPA0 | - | _ | 0000 | | | | 31:16 | | | | | | | | | | | | _ | _ | _ | _ | _ | 0000 | | FB04 | RPA1R | 15:0 | _ | _ | _ | | _ | | | _ | | _ | _ | _ | | RPA1 | <3:0> | | 0000 | | | | 31:16 | _ | | _ | | _ | | _ | _ | | _ | _ | _ | | _ | _ | _ | 0000 | | FB08 | RPA2R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA2 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | 0000 | | FB0C | RPA3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA3 | <3:0> | | 0000 | | ED40 | RPA4R | 31:16 | _ | 1 | _ | - | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB10 | RPA4R | 15:0 | _ | | _ | _ | _ | | _ | _ | _ | _ | _ | _ | | RPA4 | <3:0> | | 0000 | | FB20 | RPA8R ⁽¹⁾ | 31:16 | _ | 1 | _ | - | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | 1 020 | IN AOIN. | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA8 | <3:0> | | 0000 | | FB24 | RPA9R ⁽¹⁾ | 31:16 | _ | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | - | _ | _ | _ | 0000 | | | | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPA9 | <3:0> | | 0000 | | FB2C | RPB0R | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | 0000 | | | | 15:0 | | | _ | | | | | | | | | | | RPB0 | | | 0000 | | FB30 | RPB1R | 31:16
15:0 | | | _ | | | | | | | | | | | RPB1 | -2:0> | _ | 0000 | | | | 31:16 | | | _ | | | | | | | _ | _ | _ | _ | — KFB1 | <u> </u> | _ | 0000 | | FB34 | RPB2R | 15:0 | _ | | | | | | | | | _ | _ | | | RPB2 | | _ | 0000 | | | | 31:16 | _ | | _ | | _ | | | _ | | _ | _ | _ | _ | _ | _ | l _ | 0000 | | FB38 | RPB3R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB3 | <3:0> | | 0000 | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FB3C | RPB4R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPB4 | <3:0> | | 0000 | | ED 40 | DDDCD | 31:16 | _ | 1 | _ | | _ | - | _ | _ | 1 | _ | _ | _ | - | _ | _ | _ | 0000 | | FB40 | RPB5R | 15:0 | _ | | _ | | _ | - | _ | _ | | _ | _ | _ | | RPB5 | <3:0> | | 0000 | | FB44 | RPB6R ⁽²⁾ | 31:16 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1 044 | INF DOIN, 7 | 15:0 | _ | 1 | _ | 1 | - | 1 | - | - | 1 | _ | _ | _ | | RPB6 | <3:0> | | 0000 | | FB48 | RPB7R | 31:16 | _ | | _ | | _ | | _ | _ | | _ | | | _ | _ | _ | _ | 0000 | | . 2 .0 | 2 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | | RPB7 | <3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. This register is only available on 44-pin devices. Note 1: This register is only available on PIC32MX1XX devices. 2: This register is only available on 36-pin and 44-pin devices. #### 12.0 TIMER1 Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14.** "Timers" (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (SOSC) for Real-Time Clock (RTC) applications. The following modes are supported: - · Synchronous Internal Timer - · Synchronous Internal Gated Timer - Synchronous External Timer - · Asynchronous External Timer ### 12.1 Additional Supported Features - · Selectable clock prescaler - · Timer operation during CPU Idle and Sleep mode - Fast bit manipulation using CLR, SET and INV registers - Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC) Figure 12-1 illustrates a general block diagram of Timer1. FIGURE 12-1: TIMER1 BLOCK DIAGRAM **Note:** The default state of the SOSCEN (OSCCON<1>) bit during a device Reset is controlled by the FSOSCEN bit in Configuration Word, DEVCFG1. Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module. FIGURE 19-2: UART RECEPTION FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA) #### REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | R/W-x | 31:24 | | YEAR1 | 0<3:0> | | | YEAR0 | 1<3:0> | | | 22.40 | U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | | 23:16 | _ | _ | _ | MONTH10 | | MONTH | 01<3:0> | | | 45.0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | | 15:8 | _ | _ | DAY10 |)<1:0> | | DAY01 | <3:0> | | | 7.0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-x | R/W-x | R/W-x | | 7:0 | _ | _ | _ | _ | _ | ٧ | VDAY01<2:0 | > | #### Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digit; contains a value from 0 to 9 bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1s place digit; contains a value from 0 to 9 bit 23-21 Unimplemented: Read as '0' bit 20 MONTH10: Binary-Coded Decimal Value of Months bits, 10s place digit; contains a value of 0 or 1 bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 Unimplemented: Read as '0' bit 13-12 DAY10<1:0>: Binary-Coded Decimal Value of Days bits, 10s place digit; contains a value of 0 to 3 bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9 bit 7-3 Unimplemented: Read as '0' bit 2-0 WDAY01<2:0>: Binary-Coded Decimal Value of Weekdays bits; contains a value from 0 to 6 **Note:** This register is only writable when RTCWREN = 1 (RTCCON<3>). # 22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The 10-bit Analog-to-Digital Converter (ADC) includes the following features: - Successive Approximation Register (SAR) conversion - · Up to 1 Msps conversion speed - · Up to 13 analog input pins - · External voltage reference input pins - One unipolar, differential Sample and Hold Amplifier (SHA) - · Automatic Channel Scan mode - Selectable conversion trigger source - · 16-word conversion result buffer - · Selectable buffer fill modes - Eight conversion result format options - · Operation during Sleep and Idle modes A block diagram of the 10-bit ADC is illustrated in Figure 22-1. Figure 22-2 illustrates a block diagram of the ADC conversion clock period. The 10-bit ADC has up to 13 analog input pins, designated AN0-AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references. #### FIGURE 22-1: ADC1 MODULE BLOCK DIAGRAM - Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs. - 2: AN8 is only available on 44-pin devices. AN6, AN7, and AN12 are not available on 28-pin devices. - 3: Connected to the CTMU module. See Section 25.0 "Charge Time Measurement Unit (CTMU)" for more information. - 4: Internal precision voltage reference (1.2V). - 5: This selection is only used with CTMU capacitive and time measurement. #### REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------| | 24.24 | U-0 | 31:24 | | _ | _ | _ | _ | | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDL | _ | _ | F | ORM<2:0> | | | 7.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0, HSC | R/C-0, HSC | | 7:0 | | SSRC<2:0> | | CLRASAM | _ | ASAM | SAMP ⁽²⁾ | DONE ⁽³⁾ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** ADC Operating Mode bit⁽¹⁾ 1 = ADC module is operating 0 = ADC module is not operating bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when the device enters Idle mode bit 12-11 **Unimplemented:** Read as '0' bit 10-8 FORM<2:0>: Data Output Format bits 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000) 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd) 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000) 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000) 000 =Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd) bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits 111 = Internal counter ends sampling and starts conversion (auto convert) 110 = Reserved 101 = Reserved 100 = Reserved 011 = CTMU ends sampling and starts conversion 010 = Timer 3 period match ends sampling and starts conversion 001 = Active transition on INTO pin ends sampling and starts conversion 000 = Clearing SAMP bit ends sampling and starts conversion - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion. - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion. ## 24.1 Comparator Voltage Reference Control Register ### TABLE 24-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP | ess | | ø. | | | | | | | | Bits | | | | | | | | | | |-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|-------|------|-------|------|------|------|------|------------| | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 0000 | O) (DOON | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 9800 | CVRCON | 15:0 | ON | _ | _ | _ | | _ | _ | _ | _ | CVROE | CVRR | CVRSS | | CVR< | 3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. ## 25.1 CTMU Control Registers ### TABLE 25-1: CTMU REGISTER MAP | ess | | | | | | | | | | Bits | | | | | | | | | | |--------------------------|---------------------------------|-----------|---------|---------|----------|-------|---------|----------|----------|----------|---------|---------|--------|-------|----------|------|------|-------|------------| | Virtual Addr
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 4000 | CTMUCON | 31:16 | EDG1MOD | EDG1POL | | EDG1S | EL<3:0> | | EDG2STAT | EDG1STAT | EDG2MOD | EDG2POL | | EDG2S | SEL<3:0> | | _ | _ | 0000 | | A200 | CIMUCON | 15:0 | ON | _ | CTMUSIDL | TGEN | EDGEN | EDGSEQEN | IDISSEN | CTTRIG | | | ITRIM• | <5:0> | | | IRNG | <1:0> | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information PIC32MX1XX/2XX 28/36/44-PIN FAMILY ### REGISTER 27-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED) bit 2-0 FPLLIDIV<2:0>: PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider Note 1: This bit is only available on PIC32MX2XX devices. #### 30.1 DC Characteristics TABLE 30-1: OPERATING MIPS VS. VOLTAGE | Characteristic | VDD Range | Temp. Range | Max. Frequency | |----------------|---------------------------|-----------------|------------------------------------| | Characteristic | (in Volts) ⁽¹⁾ | (in °C) | PIC32MX1XX/2XX 28/36/44-pin Family | | DC5 | 2.3-3.6V | -40°C to +85°C | 40 MHz | | DC5b | 2.3-3.6V | -40°C to +105°C | 40 MHz | **Note 1:** Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 30-11 for BOR values. ### TABLE 30-2: THERMAL OPERATING CONDITIONS | Rating | Symbol | Min. | Typical | Max. | Unit | |--|--------|------|-------------|------|------| | Industrial Temperature Devices | | | | | | | Operating Junction Temperature Range | TJ | -40 | _ | +125 | °C | | Operating Ambient Temperature Range | TA | -40 | _ | +85 | °C | | V-temp Temperature Devices | | | | | | | Operating Junction Temperature Range | TJ | -40 | _ | +140 | °C | | Operating Ambient Temperature Range | TA | -40 | _ | +105 | °C | | Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH) | PD | | PINT + PI/C |) | W | | I/O Pin Power Dissipation:
I/O = S (({VDD – VOн} x IOн) + S (VoL x IOL)) | | | | | | | Maximum Allowed Power Dissipation | PDMAX | (| TJ – TA)/θJ | Α | W | ### TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS | Characteristics | Symbol | Typical | Max. | Unit | Notes | |--|--------|---------|------|------|-------| | Package Thermal Resistance, 28-pin SSOP | θЈА | 71 | _ | °C/W | 1 | | Package Thermal Resistance, 28-pin SOIC | θЈА | 50 | _ | °C/W | 1 | | Package Thermal Resistance, 28-pin SPDIP | θЈА | 42 | | °C/W | 1 | | Package Thermal Resistance, 28-pin QFN | θЈА | 35 | _ | °C/W | 1 | | Package Thermal Resistance, 36-pin VTLA | θЈА | 31 | _ | °C/W | 1 | | Package Thermal Resistance, 44-pin QFN | θЈА | 32 | _ | °C/W | 1 | | Package Thermal Resistance, 44-pin TQFP | θЈА | 45 | _ | °C/W | 1 | | Package Thermal Resistance, 44-pin VTLA | θЈА | 30 | _ | °C/W | 1 | **Note 1:** Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations. #### TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS | DC CHA | ARACTERI | ISTICS | (unless | otherwi | se state | e d)
-40°C ≤ | :: 2.3V to 3.6V
≤ TA ≤ +85°C for Industrial
≤ TA ≤ +105°C for V-temp | |--------|----------|-----------------------------|--------------------|---------|----------|------------------------|--| | Param. | Symbol | Characteristic | Min. | Тур. | Max. | Units | Conditions | | DO10 | VoL | Output Low Voltage I/O Pins | _ | _ | 0.4 | V | IOL ≤ 10 mA, VDD = 3.3V | | | | Output High Voltage | 1.5 ⁽¹⁾ | | _ | | IOH ≥ -14 mA, VDD = 3.3V | | DO20 | Vон | I/O Pins | 2.0 ⁽¹⁾ | | _ | V | IOH ≥ -12 mA, VDD = 3.3V | | DO20 | VOH | | 2.4 | _ | _ | V | IOH ≥ -10 mA, VDD = 3.3V | | | | | 3.0(1) | _ | _ | | IOH \geq -7 mA, VDD = 3.3V | Note 1: Parameters are characterized, but not tested. #### TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR | IADLL | JU-11. L | LLCTRICAL CHARACTERI | 31103. | DOIL | | | | |---------------|---|----------------------|---------------------|---------------------------------------|-----------|----------------------|---| | DC CHA | RACTER | ISTICS | (unles | ard Operates otherwise ing temperates | se stated | d)
-40°C ≤ | s: 2.3V to 3.6V ≤ TA ≤ +85°C for Industrial ≤ TA ≤ +105°C for V-temp | | Param.
No. | Symbol | Characteristics | Min. ⁽¹⁾ | Typical | Max. | Units | Conditions | | BO10 | O VBOR BOR Event on VDD transition high-to-low ⁽²⁾ | | 2.0 | _ | 2.3 | V | _ | Note 1: Parameters are for design guidance only and are not tested in manufacturing. ^{2:} Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. ### APPENDIX A: REVISION HISTORY ### Revision A (May 2011) This is the initial released version of this document. ### **Revision B (October 2011)** The following two global changes are included in this revision: - All packaging references to VLAP have been changed to VTLA throughout the document - · All references to VCORE have been removed - All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed - V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables This revision includes the addition of the following devices: - PIC32MX130F064B - PIC32MX230F064B - PIC32MX130F064C - PIC32MX230F064C - PIC32MX130F064D - PIC32MX230F064D - PIC32MX150F128B - PIC32MX250F128B - PIC32MX150F128C - PIC32MX250F128C - PIC32MX150F128D - PIC32MX250F128D Text and formatting changes were incorporated throughout the document. All other major changes are referenced by their respective section in Table A-1. #### TABLE A-1: MAJOR SECTION UPDATES | Section | Update Description | |---|---| | "32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio | Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2). | | and Graphics Interfaces, USB, and Advanced Analog" | Added the SPDIP package reference (see Table 1, Table 2, and "Pin Diagrams"). | | | Added the new devices to the applicable pin diagrams. | | | Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices. | | 1.0 "Device Overview" | Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1). | | | Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1). | | 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers" | Updated the Recommended Minimum Connection diagram (see Figure 2-1). |