Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | etails | | |--------------------------|---| | oduct Status | Active | | ore Processor | MIPS32® M4K™ | | ore Size | 32-Bit Single-Core | | peed | 40MHz | | onnectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART | | eripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | umber of I/O | 35 | | ogram Memory Size | 128KB (128K x 8) | | ogram Memory Type | FLASH | | EPROM Size | - | | AM Size | 32K x 8 | | ltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | ata Converters | A/D 13x10b | | scillator Type | Internal | | perating Temperature | -40°C ~ 85°C (TA) | | ounting Type | Surface Mount | | ckage / Case | 44-VQFN Exposed Pad | | pplier Device Package | 44-QFN (8x8) | | rchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f128dt-i-ml | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong TABLE 2: PIC32MX2XX 28/36/44-PIN USB FAMILY FEATURES | Remappable Peripherals |---------------------------------|------|------------------------------------|------------------|-----------------|--|------|----------------------|------------------------------------|--------------------|---------------------|------------------|-----|--|------|------------------------------|------|----------|------|---------------------------------| | Device | Pins | Program Memory (KB) ⁽¹⁾ | Data Memory (KB) | Remappable Pins | Timers ⁽²⁾ /Capture/Compare | UART | SPI/I ² S | External Interrupts ⁽³⁾ | Analog Comparators | USB On-The-Go (OTG) | 1 ² C | ЬМР | DMA Channels
(Programmable/Dedicated) | ОШТЭ | 10-bit 1 Msps ADC (Channels) | RTCC | I/O Pins | JTAG | Packages | | PIC32MX210F016B | 28 | 16+3 | 4 | 19 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 9 | Y | 19 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX210F016C | 36 | 16+3 | 4 | 23 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 12 | Υ | 25 | Υ | VTLA
VTLA, | | PIC32MX210F016D | 44 | 16+3 | 4 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | TQFP,
QFN | | PIC32MX220F032B | 28 | 32+3 | 8 | 19 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Y | 9 | Y | 19 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX220F032C | 36 | 32+3 | 8 | 23 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 12 | Υ | 23 | Υ | VTLA | | PIC32MX220F032D | 44 | 32+3 | 8 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | VTLA,
TQFP,
QFN | | PIC32MX230F064B | 28 | 64+3 | 16 | 19 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 9 | Υ | 19 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX230F064C | 36 | 64+3 | 16 | 23 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 12 | Υ | 23 | Υ | VTLA | | PIC32MX230F064D | 44 | 64+3 | 16 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | VTLA,
TQFP,
QFN | | PIC32MX250F128B | 28 | 128+3 | 32 | 19 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Y | 9 | Υ | 19 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX250F128C | 36 | 128+3 | 32 | 23 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 12 | Υ | 23 | Υ | VTLA
VTLA, | | PIC32MX250F128D | 44 | 128+3 | 32 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | TQFP,
QFN | | PIC32MX230F256B | 28 | 256+3 | 16 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Y | 9 | Y | 19 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX230F256D | 44 | 256+3 | 16 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Y | 13 | Υ | 33 | Y | VTLA,
TQFP,
QFN | | PIC32MX270F256B | 28 | 256+3 | 64 | 19 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 9 | Υ | 19 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX270F256D | 44 | 256+3 | 64 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | VTLA,
TQFP,
QFN | | PIC32MX270F256DB ⁽⁴⁾ | 44 | 256+3 | 64 | 31 | 5/5/5 | 2 | 2 | 5 | 3 | Υ | 2 | Υ | 4/2 | Υ | 13 | Υ | 33 | Υ | VTLA,
TQFP,
QFN | Note 1: This device features 3 KB of boot Flash memory. **^{2:}** Four out of five timers are remappable. **^{3:}** Four out of five external interrupts are remappable. **^{4:}** This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers. #### TABLE 5: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES 28-PIN QFN (TOP VIEW)(1,2,3.4) PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B PIC32MX150F128B PIC32MX170F256B 28 1 | Pin # | Full Pin Name | |-------|---------------------------------------| | 1 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 | | 2 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 | | 3 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 | | 4 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 | | 5 | Vss | | 6 | OSC1/CLKI/RPA2/RA2 | | 7 | OSC2/CLKO/RPA3/PMA0/RA3 | | 8 | SOSCI/RPB4/RB4 | | 9 | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 | | 10 | VDD | | 11 | PGED3/RPB5/PMD7/RB5 | | 12 | PGEC3/RPB6/PMD6/RB6 | | 13 | TDI/RPB7/CTED3/PMD5/INT0/RB7 | | 14 | TCK/RPB8/SCL1/CTED10/PMD4/RB8 | | Pin# | Full Pin Name | |------|--| | 15 | TDO/RPB9/SDA1/CTED4/PMD3/RB9 | | 16 | Vss | | 17 | VCAP | | 18 | PGED2/RPB10/CTED11/PMD2/RB10 | | 19 | PGEC2/TMS/RPB11/PMD1/RB11 | | 20 | AN12/PMD0/RB12 | | 21 | AN11/RPB13/CTPLS/PMRD/RB13 | | 22 | CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14 | | 23 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 24 | AVss | | 25 | AVDD | | 26 | MCLR | | 27 | VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 | | 28 | VREF-/CVREF-/AN1/RPA1/CTED2/RA1 | Note - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. - 3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: Shaded pins are 5V tolerant. #### TABLE 13: PIN NAMES FOR 44-PIN GENERAL PURPOSE DEVICES 44-PIN VTLA (TOP VIEW)(1,2,3,5) PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D 44 | Pin # | Full Pin Name | |-------|--| | 1 | RPB9/SDA1/CTED4/PMD3/RB9 | | 2 | RPC6/PMA1/RC6 | | 3 | RPC7/PMA0/RC7 | | 4 | RPC8/PMA5/RC8 | | 5 | RPC9/CTED7/PMA6/RC9 | | 6 | Vss | | 7 | VCAP | | 8 | PGED2/RPB10/CTED11/PMD2/RB10 | | 9 | PGEC2/RPB11/PMD1/RB11 | | 10 | AN12/PMD0/RB12 | | 11 | AN11/RPB13/CTPLS/PMRD/RB13 | | 12 | PGED4 ⁽⁴⁾ /TMS/PMA10/RA10 | | 13 | PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7 | | 14 | CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14 | | 15 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 16 | AVss | | 17 | AVDD | | 18 | MCLR | | 19 | VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 | | 20 | VREF-/CVREF-/AN1/RPA1/CTED2/RA1 | | 21 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 | | 22 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 | | Pin # | Full Pin Name | |-------|--------------------------------------| | 23 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 | | 24 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 | | 25 | AN6/RPC0/RC0 | | 26 | AN7/RPC1/RC1 | | 27 | AN8/RPC2/PMA2/RC2 | | 28 | VDD | | 29 | Vss | | 30 | OSC1/CLKI/RPA2/RA2 | | 31 | OSC2/CLKO/RPA3/RA3 | | 32 | TDO/RPA8/PMA8/RA8 | | 33 | SOSCI/RPB4/RB4 | | 34 | SOSCO/RPA4/T1CK/CTED9/RA4 | | 35 | TDI/RPA9/PMA9/RA9 | | 36 | RPC3/RC3 | | 37 | RPC4/PMA4/RC4 | | 38 | RPC5/PMA3/RC5 | | 39 | Vss | | 40 | VDD | | 41 | PGED3/RPB5/PMD7/RB5 | | 42 | PGEC3/RPB6/PMD6/RB6 | | 43 | RPB7/CTED3/PMD5/INT0/RB7 | | 44 | RPB8/SCL1/CTED10/PMD4/RB8 | - Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. - 3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices. - 5: Shaded pins are 5V tolerant. #### 7.0 INTERRUPT CONTROLLER Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupt Controller"** (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). PIC32MX1XX/2XX 28/36/44-pin Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. The PIC32MX1XX/2XX 28/36/44-pin Family interrupt module includes the following features: - · Up to 64 interrupt sources - · Up to 44 interrupt vectors - · Single and multi-vector mode operations - · Five external interrupts with edge polarity control - · Interrupt proximity timer - Seven user-selectable priority levels for each vector - Four user-selectable subpriority levels within each priority - · Software can generate any interrupt - User-configurable Interrupt Vector Table (IVT) location - · User-configurable interrupt vector spacing **Note:** The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/36/44-pin Family devices. A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1. FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM #### REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | | _ | _ | - | _ | _ | _ | _ | | 00.40 | R/W-0 | 23:16 | CHSDIE | CHSHIE | CHDDIE | CHDHIE | CHBCIE | CHCCIE | CHTAIE | CHERIE | | 45.0 | U-0 | 15:8 | _ | _ | _ | _ | _ | _ | _ | _ | | 7.0 | R/W-0 | 7:0 | CHSDIF | CHSHIF | CHDDIF | CHDHIF | CHBCIF | CHCCIF | CHTAIF | CHERIF | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-24 Unimplemented: Read as '0' bit 23 CHSDIE: Channel Source Done Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 20 **CHDHIE:** Channel Destination Half Full Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 16 CHERIE: Channel Address Error Interrupt Enable bit 1 = Interrupt is enabled0 = Interrupt is disabled bit 15-8 Unimplemented: Read as '0' bit 7 CHSDIF: Channel Source Done Interrupt Flag bit 1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ) 0 = No interrupt is pending bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2) 0 = No interrupt is pending bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending #### REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | - | _ | _ | _ | _ | _ | _ | _ | | 22.46 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | U-0 | 15:8 | - | _ | _ | - | _ | _ | - | _ | | 7.0 | R/W-0 | 7:0 | | _ | | CHPDAT | Γ<7:0> | _ | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-0 CHPDAT<7:0>: Channel Data Register bits Pattern Terminate mode: Data to be matched must be stored in this register to allow a "terminate on match". All other modes: Unused. | TABLE 10-1: | USB REGISTER | MAP (CONTI | NUED) | |-------------|--------------|------------|-------| |-------------|--------------|------------|-------| | ess | | 6 | Bits | | | | | | | | | | | " | | | | | | |----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|----------|--------|--------|---------|--------|------------| | Virtual Addres
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 5390 | U1EP9 | 31:16 | _ | _ | | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | | 0000 | | 3390 | UILF9 | 15:0 | | _ | | _ | _ | _ | | | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 53A0 | 53A0 U1EP10 3 | 31:16 | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | 0000 | | 33A0 | OTEFIO | 15:0 | | _ | | _ | _ | _ | | | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 53B0 | U1EP11 | 31:16 | | _ | I | | _ | _ | ı | | | _ | _ | _ | _ | | _ | ı | 0000 | | 3350 | OILFII | 15:0 | | _ | I | | _ | _ | ı | | | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 53C0 | U1EP12 | 31:16 | | _ | I | | _ | _ | ı | | | _ | _ | _ | _ | | _ | ı | 0000 | | 3300 | OTEF 12 | 15:0 | | _ | I | | _ | _ | ı | | | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 53D0 | U1EP13 | 31:16 | | _ | I | | _ | _ | ı | | | _ | _ | _ | _ | | _ | ı | 0000 | | 3300 | OTEF 13 | 15:0 | | _ | I | | _ | _ | ı | | | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | 5050 | LIAEDAA | 31:16 | | _ | - | _ | _ | - | - | - | 1 | _ | _ | _ | _ | _ | - | 1 | 0000 | | 53E0 | U1EP14 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | | E2E0 | U1EP15 | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 53F0 | UTEP15 | 15:0 | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | EPCONDIS | EPRXEN | EPTXEN | EPSTALL | EPHSHK | 0000 | **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. - 2: This register does not have associated SET and INV registers. - 3: This register does not have associated CLR, SET and INV registers. - 4: Reset value for this bit is undefined. | ◡ | |------------| | DS60001 | | O | | 0 | | 0 | | 0 | | _ | | _ | | o | | φ | | 168J- | | ö | | ã | | Ō | | page | | | | 135 | | ω | | $^{\circ}$ | | | | | | TABLE 11-5: | PORTC REGISTER MAP | • | |-------------|--------------------|---| | IADLE II-J. | PURIC REGISTER WAR | | | ess | | | | Bits | | | | | | | | | | | | 10 | | | | |-----------------------------|-----------------------------------|-----------|-------|-------|-------|-------|-------|-------|----------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|-----------------------|----------|----------|------------| | Virtual Address
(BF88_#) | Register
Name ^(1,2) | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6200 | ANSELC | 31:16 | I | _ | _ | _ | _ | _ | _ | ı | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 0200 | ANSELC | 15:0 | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | ANSC3 ⁽⁴⁾ | ANSC2 ⁽³⁾ | ANSC1 | ANSC0 | 000F | | 6210 | TRISC | 31:16 | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | _ | 0000 | | 6210 TRISC | TRISC | 15:0 | I | _ | _ | _ | | | TRISC9 | TRISC8 ⁽³⁾ | TRISC7 ⁽³⁾ | TRISC6 ⁽³⁾ | TRISC5 ⁽³⁾ | TRISC4 ⁽³⁾ | TRISC3 | TRISC2 ⁽³⁾ | TRISC1 | TRISC0 | 03FF | | 6220 | PORTC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | | | | | | 0000 | | 0220 | PORTC | 15:0 | I | _ | _ | _ | _ | _ | RC9 | RC8 ⁽³⁾ | RC7 ⁽³⁾ | RC6 ⁽³⁾ | RC5 ⁽³⁾ | RC4 ⁽³⁾ | RC3 | RC2 ⁽³⁾ | RC1 | RC0 | xxxx | | 6230 | LATC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0230 | LKI | 15:0 | I | _ | _ | _ | _ | _ | LATC9 | LATC8 ⁽³⁾ | LATC7 ⁽³⁾ | LATC6 ⁽³⁾ | LATC5 ⁽³⁾ | LATC4 ⁽³⁾ | LATC3 | LATC2 ⁽³⁾ | LATC1 | LATC0 | xxxx | | 6240 | ODCC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0240 | ODCC | 15:0 | _ | _ | _ | _ | _ | _ | ODCC9 | ODCC8 ⁽³⁾ | ODCC7 ⁽³⁾ | ODCC6 ⁽³⁾ | ODCC5 ⁽³⁾ | ODCC4 ⁽³⁾ | ODCC3 | ODCC2 ⁽³⁾ | ODCC1 | ODCC0 | 0000 | | 6250 | CNPUC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0250 | CNPUC | 15:0 | I | _ | _ | _ | _ | _ | CNPUC9 | CNPUC8 ⁽³⁾ | CNPUC7 ⁽³⁾ | CNPUC6 ⁽³⁾ | CNPUC5 ⁽³⁾ | CNPUC4 ⁽³⁾ | CNPUC3 | CNPUC2 ⁽³⁾ | CNPUC1 | CNPUC0 | 0000 | | 0000 | CNIDDO | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6260 | CNPDC | 15:0 | _ | _ | _ | _ | _ | _ | CNPDC9 | CNPDC8 ⁽³⁾ | CNPDC7 ⁽³⁾ | CNPDC6 ⁽³⁾ | CNPDC5 ⁽³⁾ | CNPDC4 ⁽³⁾ | CNPDC3 | CNPDC2 ⁽³⁾ | CNPDC1 | CNPDC0 | 0000 | | 6070 | CNICONIC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 6270 | CNCONC | 15:0 | ON | _ | SIDL | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6200 | CNENC | 31:16 | I | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | | 0000 | | 6280 | CNENC | 15:0 | I | _ | _ | _ | _ | _ | CNIEC9 | CNIEC8 ⁽³⁾ | CNIEC7 ⁽³⁾ | CNIEC6(3) | CNIEC5 ⁽³⁾ | CNIEC4 ⁽³⁾ | CNIEC3 | CNIEC2 ⁽³⁾ | CNIEC1 | CNIEC0 | 0000 | | 6200 | CNICTATO | 31:16 | l | _ | _ | _ | _ | _ | | | _ | | _ | | _ | _ | _ | | 0000 | | 0290 | CNSTATC | 15:0 | _ | _ | _ | _ | _ | _ | CNSTATC9 | CNSTATC8(3) | CNSTATC7 ⁽³⁾ | CNSTATC6 ⁽³⁾ | CNSTATC5 ⁽³⁾ | CNSTATC4 ⁽³⁾ | CNSTATC3 | CNSTATC2(3) | CNSTATC1 | CNSTATCO | 0000 | ${f x}$ = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for - PORTC is not available on 28-pin devices. 2: - This bit is only available on 44-pin devices. - This bit is only available on USB-enabled devices with 36 or 44 pins. #### REGISTER 21-1: RTCCON: RTC CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | | |--------------|---------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------------------------|------------------|--|--|--|--| | 04.04 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | | | | | | 31:24 | _ | _ | _ | _ | _ | _ | CAL<9 |):8> | | | | | | 22.40 | R/W-0 | | | | | 23:16 | CAL<7:0> | | | | | | | | | | | | | 45.0 | R/W-0 | U-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | U-0 | | | | | | 15:8 | ON ^(1,2) | _ | SIDL | _ | _ | _ | _ | _ | | | | | | 7.0 | R/W-0 | R-0 | U-0 | U-0 | R/W-0 | R-0 | R-0 | R/W-0 | | | | | | 7:0 | RTSECSEL(3) | RTCCLKON | _ | _ | RTCWREN ⁽⁴⁾ | RTCSYNC | HALFSEC ⁽⁵⁾ | RTCOE | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-26 Unimplemented: Read as '0' bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute • 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 0000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute • 1000000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute bit 15 **ON:** RTCC On bit^(1,2) 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when the device enters Idle mode 0 = Continue normal operation when the device enters Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit (3) 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running **Note 1:** The ON bit is only writable when RTCWREN = 1. - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. - **4:** The RTCWREN bit can be set only when the write sequence is enabled. - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). **Note:** This register is reset only on a Power-on Reset (POR). #### REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | ADRC | _ | _ | | | | | | | 7.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W | R/W-0 | | 7:0 | | _ | | ADCS< | 7:0> ⁽²⁾ | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 ADRC: ADC Conversion Clock Source bit 1 = Clock derived from FRC 0 = Clock derived from Peripheral Bus Clock (PBCLK) bit 14-13 Unimplemented: Read as '0' bit 12-8 **SAMC<4:0>:** Auto-Sample Time bits⁽¹⁾ 11111 = **31** TAD 00001 = 1 TAD 00000 = 0 TAD (Not allowed) ADCS<7:0>: ADC Conversion Clock Select bits(2) bit 7-0 11111111 = TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111. 2: This bit is not used if the ADRC (AD1CON3<15>) bit = 1. #### REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-----------------------|------------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | - | - | _ | _ | _ | _ | _ | | 45.0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 | | 15:8 | _ | | IOLOCK ⁽¹⁾ | PMDLOCK ⁽¹⁾ | _ | _ | | _ | | 7.0 | U-0 | U-0 | U-0 | U-0 | R/W-1 | U-0 | U-1 | R/W-1 | | 7:0 | _ | | | _ | JTAGEN | _ | | TDOEN | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-14 Unimplemented: Read as '0' bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾ ${\tt 1}$ = Peripheral Pin Select is locked. Writes to PPS registers is not allowed. 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed. bit 12 **PMDLOCK:** Peripheral Module Disable bit⁽¹⁾ 1 = Peripheral module is locked. Writes to PMD registers is not allowed. 0 = Peripheral module is not locked. Writes to PMD registers is allowed. bit 11-4 Unimplemented: Read as '0' bit 3 JTAGEN: JTAG Port Enable bit 1 = Enable the JTAG port 0 = Disable the JTAG port bit 2-1 Unimplemented: Read as '1' bit 0 TDOEN: TDO Enable for 2-Wire JTAG bit 1 = 2-wire JTAG protocol uses TDO 0 = 2-wire JTAG protocol does not use TDO **Note 1:** To change this bit, the unlock sequence must be performed. Refer to **Section 6. "Oscillator"** (DS60001112) in the "PIC32 Family Reference Manual" for details. #### 29.6 MPLAB X SIM Software Simulator The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. # 29.7 MPLAB REAL ICE In-Circuit Emulator System The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE. The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables. # 29.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE. The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. #### 29.9 PICkit 3 In-Circuit Debugger/ Programmer The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™). #### 29.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications. TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS | DC CHA | ARACTER | ISTICS | | | | | | | |---------------|---------|---|--------------------|---------------------|---------------------|-------|--|--| | Param.
No. | Symbol | Characteristics | Min. | Typ. ⁽¹⁾ | Max. | Units | Conditions | | | DI60a | licl | Input Low Injection
Current | 0 | _ | ₋₅ (2,5) | mA | This parameter applies to all pins, with the exception of the power pins. | | | DI60b | lich | Input High Injection
Current | 0 | _ | +5(3,4,5) | mA | This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins. | | | DI60c | ∑lict | Total Input Injection
Current (sum of all I/O
and Control pins) | ₋₂₀ (6) | | +20(6) | mA | Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT) | | - **Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 2: VIL source < (Vss 0.3). Characterized but not tested. - 3: VIH source > (VDD + 0.3) for non-5V tolerant pins only. - **4:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current. - 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., ViH Source > (VDD + 0.3) or ViL source < (Vss 0.3)). - 6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If **Note 2**, IICL = (((Vss 0.3) VIL source) / Rs). If **Note 3**, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0. #### FIGURE 30-3: I/O TIMING CHARACTERISTICS #### TABLE 30-21: I/O TIMING REQUIREMENTS | AC CHA | RACTERIS | STICS | (unless other | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | | | |-------------------------------|----------|---------------------------|----------------------|--|------------------------|------|---------|------------|--|--| | Param. No. Symbol Characteris | | | stics ⁽²⁾ | Min. | Typical ⁽¹⁾ | Max. | Units | Conditions | | | | DO31 | TioR | Port Output Rise Time | | 1 | 5 | 15 | ns | VDD < 2.5V | | | | | | | | 1 | 5 | 10 | ns | VDD > 2.5V | | | | DO32 | TioF | Port Output Fall Tim | е | 1 | 5 | 15 | ns | VDD < 2.5V | | | | | | | | 1 | 5 | 10 | ns | VDD > 2.5V | | | | DI35 | TINP | INTx Pin High or Low Time | | 10 | _ | | ns | _ | | | | DI40 | TRBP | CNx High or Low Tir | me (input) | 2 | _ | _ | Tsysclk | _ | | | Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. 2: This parameter is characterized, but not tested in manufacturing. **TABLE 30-35: 10-BIT CONVERSION RATE PARAMETERS** | AC CHARA | CTERISTIC | S ⁽²⁾ | Standard Operating Conditions (see Note 3): 2.5V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{Ta} \leq +105^{\circ}\text{C}$ for V-temp | | | | | |---------------------------------------|-----------|------------------|---|-----------------|----------------------------|--|--| | ADC Speed TAD Min. Sampling Time Min. | | | Rs Max. | VDD | ADC Channels Configuration | | | | 1 Msps to 400 ksps ⁽¹⁾ | 65 ns | 132 ns | 500Ω | 3.0V to
3.6V | ANX CHX ADC | | | | Up to 400 ksps | 200 ns | 200 ns | 5.0 kΩ | 2.5V to
3.6V | ANX SHA ADC ANX OF VREF- | | | - **Note 1:** External VREF- and VREF+ pins must be used for correct operation. - 2: These parameters are characterized, but not tested in manufacturing. - **3:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS | AC CHA | ARACTER | ISTICS | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | |---------------|---------|--|--|-------|------|-------|------------|--|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Тур. | Max. | Units | Conditions | | | | PM1 | TLAT | PMALL/PMALH Pulse Width | _ | 1 Трв | | _ | _ | | | | PM2 | TADSU | Address Out Valid to
PMALL/PMALH Invalid (address
setup time) | _ | 2 Трв | | _ | _ | | | | РМ3 | TADHOLD | PMALL/PMALH Invalid to
Address Out Invalid (address
hold time) | _ | 1 Трв | _ | _ | _ | | | | PM4 | TAHOLD | PMRD Inactive to Address Out
Invalid
(address hold time) | 5 | _ | _ | ns | _ | | | | PM5 | TRD | PMRD Pulse Width | _ | 1 Трв | | _ | _ | | | | PM6 | TDSU | PMRD or PMENB Active to Data In Valid (data setup time) | 15 | _ | _ | ns | _ | | | | PM7 | TDHOLD | PMRD or PMENB Inactive to Data In Invalid (data hold time) | _ | 80 | _ | ns | _ | | | **Note 1:** These parameters are characterized, but not tested in manufacturing. FIGURE 30-22: PARALLEL MASTER PORT WRITE TIMING DIAGRAM # 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **DETAIL A** | | Units | MILLIMETERS | | | | | |-------------------------|--------|-------------|----------|-------|--|--| | Dimension | Limits | MIN | NOM | MAX | | | | Number of Pins | Ν | | 44 | | | | | Number of Pins per Side | ND | | 12 | | | | | Number of Pins per Side | NE | 10 | | | | | | Pitch | е | 0.50 BSC | | | | | | Overall Height | Α | 0.80 | 0.90 | 1.00 | | | | Standoff | A1 | 0.025 | - | 0.075 | | | | Overall Width | Е | | 6.00 BSC | | | | | Exposed Pad Width | E2 | 4.40 | 4.55 | 4.70 | | | | Overall Length | D | | 6.00 BSC | | | | | Exposed Pad Length | D2 | 4.40 | 4.55 | 4.70 | | | | Contact Width | b | 0.20 | 0.25 | 0.30 | | | | Contact Length | L | 0.20 | 0.25 | 0.30 | | | | Contact-to-Exposed Pad | K | 0.20 | - | - | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-157C Sheet 2 of 2 #### 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN] **>te:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **MILLIMETERS** Units **Dimension Limits** MIN MOM MAX Contact Pitch Ε 0.65 BSC Optional Center Pad Width W2 6.80 Optional Center Pad Length T2 6.80 Contact Pad Spacing C1 8.00 Contact Pad Spacing C2 8.00 Contact Pad Width (X44) X1 0.35 Contact Pad Length (X44) <u>Y1</u> 0.80 0.25 Distance Between Pads G #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2103A #### 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | | |--------------------------|------------------|-------------|-----------|------|--|--| | | Dimension Limits | MIN | NOM | MAX | | | | Number of Leads | N | | 44 | | | | | Lead Pitch | е | 0.80 BSC | | | | | | Overall Height | A | _ | _ | 1.20 | | | | Molded Package Thickness | A2 | 0.95 | 1.00 | 1.05 | | | | Standoff | A1 | 0.05 | _ | 0.15 | | | | Foot Length | L | 0.45 | 0.60 | 0.75 | | | | Footprint | L1 | 1.00 REF | | | | | | Foot Angle | ф | 0° | 3.5° | 7° | | | | Overall Width | E | | 12.00 BSC | | | | | Overall Length | D | | 12.00 BSC | | | | | Molded Package Width | E1 | | 10.00 BSC | | | | | Molded Package Length | D1 | | 10.00 BSC | | | | | Lead Thickness | С | 0.09 | _ | 0.20 | | | | Lead Width | b | 0.30 | 0.37 | 0.45 | | | | Mold Draft Angle Top | α | 11° | 12° | 13° | | | | Mold Draft Angle Bottom | β | 11° | 12° | 13° | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Chamfers at corners are optional; size may vary. - 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only. \\$ Microchip Technology Drawing C04-076B