

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Becano	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx150f128dt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

		Pin Nu	nber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
AN0	27	2	33	19		Analog	Analog input channels.
AN1	28	3	34	20	I	Analog	
AN2	1	4	35	21		Analog	
AN3	2	5	36	22		Analog	
AN4	3	6	1	23	I	Analog	
AN5	4	7	2	24	I	Analog	
AN6	_	_	3	25	I	Analog	
AN7	_	_	4	26	I	Analog	
AN8	_	_	_	27	I	Analog	
AN9	23	26	29	15	I	Analog	
AN10	22	25	28	14	I	Analog	
AN11	21	24	27	11	I	Analog	
AN12	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾ 11 ⁽³⁾	10 ⁽²⁾ 36 ⁽³⁾	1	Analog	*
CLKI	6	9	7	30	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	7	10	8	31	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	6	9	7	30	I	ST/CMOS	-
OSC2	7	10	8	31	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	8	11	9	33	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	9	12	10	34	0	—	32.768 kHz low-power oscillator crystal output.
REFCLKI	PPS	PPS	PPS	PPS		ST	Reference Input Clock
REFCLKO	PPS	PPS	PPS	PPS	0	—	Reference Output Clock
IC1	PPS	PPS	PPS	PPS		ST	Capture Inputs 1-5
IC2	PPS	PPS	PPS	PPS	1	ST	1
IC3	PPS	PPS	PPS	PPS	1	ST	1
IC4	PPS	PPS	PPS	PPS		ST	1
IC5	PPS	PPS	PPS	PPS		ST	1
	ST = Schm	MOS compa itt Trigger in input buffer			•	O = Outp	Analog inputP = PowerutI = Inputeripheral Pin Select— = N/A

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability. 2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

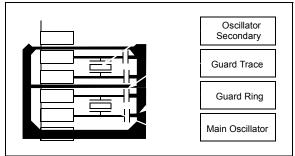
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.


Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.9 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-5 and Figure 2-6.

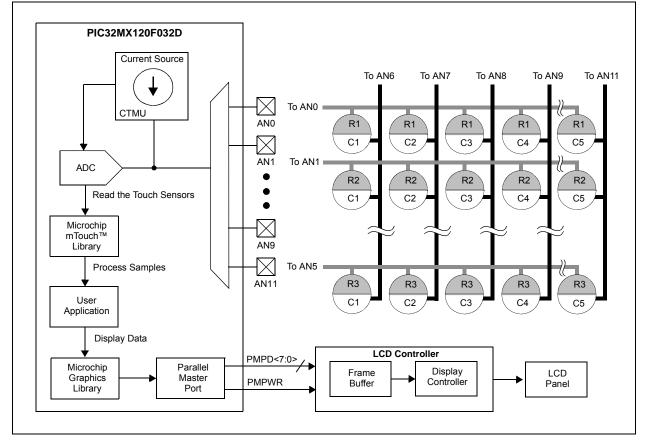
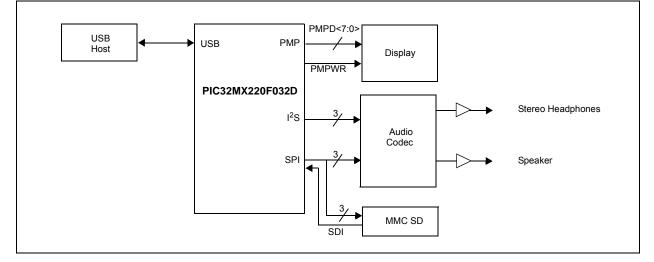



FIGURE 2-6: AUDIO PLAYBACK APPLICATION

NOTES:

			OULEAIO					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1
31:24	—	—	Р	LLODIV<2:0	`	F	RCDIV<2:0>	
00.40	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y
23:16	—	SOSCRDY	PBDIVRDY	PBDI	/<1:0>	Р	LLMULT<2:0>	•
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—		NOSC<2:0>	
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Co	onfiguration bits on POR	
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 **Unimplemented:** Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = The Secondary Oscillator is running and is stable
 - 0 = The Secondary Oscillator is still warming up or is turned off
- bit 21 **PBDIVRDY:** Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note 1: This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	_	—	—	_	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	—	—	—	_	—			
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0			
15:8	ON ⁽¹⁾	—	_	SUSPEND	DMABUSY	_	_	—			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	_	_	_	_	_	_	_	_			

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	nd as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

INE OIOT	LK 10-J.							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	_	_	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	_	_	—	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—		—	_	—	—	—
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾	_	USUSPEND	USBPWR

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

zogonai			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Note 1: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

TABLE 11-4: PORTB REGISTER MAP

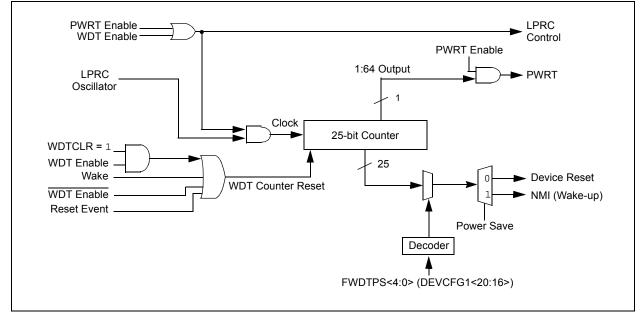
ess										Bits									
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		—		_	—	—	—	_	—	_		—	_	—	—	0000
0100	ANGLED	15:0	ANSB15	ANSB14	ANSB13	ANSB12 ⁽²⁾	—	—	—	—	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	EOOF
6110	TRISB	31:16	-	_	_	1	_	—	—	—	-	—	-	-	—	-	_	_	0000
0110	IIKIOD	15:0	TRISB15	TRISB14	TRISB13	TRISB12 ⁽²⁾	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6 ⁽²⁾	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6120	PORTB	31:16	_	_	_		_	_	_	_		_	-						0000
0120	FORTB	15:0	RB15	RB14	RB13	RB12 ⁽²⁾	RB11	RB10	RB9	RB8	RB7	RC6 ⁽²⁾	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
6130	LATB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0150	LAID	15:0	LATB15	LATB14	LATB13	LATB12 ⁽²⁾	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6 ⁽²⁾	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
C1 4 0	0000	31:16		_	—	—	_	_	_	—	_	_		—	_	—	_	—	0000
6140	ODCB	15:0	ODCB15	ODCB14	ODCB13	ODCB12 ⁽²⁾	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
6150		31:16	-	—	—	-	_	_	_	—	-	_	_	_	_	-	_	—	0000
6150	CNPUB	15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12 ⁽²⁾	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6 ⁽²⁾	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
6160	CNPDB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0100	CNPDB	15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12 ⁽²⁾	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6 ⁽²⁾	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
6170	CNCONB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0170	CINCOINE	15:0	ON	_	SIDL		-	_	_	_		_			_		_	_	0000
C400		31:16		—	—	-	—	—	—	_		—	Ι	-	—	-	—	-	0000
6180	CNENB	15:0	CNIEB15	CNIEB14	CNIEB13	CNIEB11 ⁽²⁾	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6(2)	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
		31:16	—		—		_	—	—	—	_	—	_	_	—	_	_	—	0000
6190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12 ⁽²⁾	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6 ⁽²⁾	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This bit is not available on PIC32MX2XX devices. The reset value for the TRISB register when this bit is not available is 0x0000EFBF.

14.0 WATCHDOG TIMER (WDT)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle mode

Figure 14-1 illustrates a block diagram of the WDT and Power-up timer.

FIGURE 14-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM

17.1 SPI Control Registers

TABLE 17-1: SPI1 AND SPI2 REGISTER MAP

ess		Ċ,								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	_	-	—	_	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5910	SPI1STAT	31:16	—	_	_		RXE	BUFELM<4:	0>		—	—	-		TX	BUFELM<4	:0>		0000
5610		15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5820	SPI1BUF	31:16								DATA<	31.0>								0000
3020		15:0								Brance	.01.0								0000
5830	SPI1BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	_	—	_						E	3RG<12:0>							0000
		31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	_	—	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	—		FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	-	-	AUD MONO	_	AUDMC)D<1:0>	0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—			_		SPIFE	ENHBUF	0000
5A00	3F1200N	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5410	SPI2STAT	31:16	—	_			RXE	BUFELM<4:	0>		_	-			TX	BUFELM<4	:0>		0000
SATU	3F1231AI	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0008
5A20	SPI2BUF	31:16								DATA<	31.0>								0000
5420		15:0								Brance									0000
5A30	SPI2BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5730		15:0		—	—						E	3RG<12:0>							0000
		31:16	—	—	—	_	—	_	—	—	—	—	_	—	—	—	—	—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31:24		_	_		R	XBUFELM<4:	0>	
22:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16		_	—		Tک	KBUFELM<4:0)>	
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8		—	_	FRMERR	SPIBUSY	—	—	SPITUR
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	—	-	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		_	—	-	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 19-1: UXMODE: UARTX MODE REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by the UEN<1:0> and UTXEN control bits.
 - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'

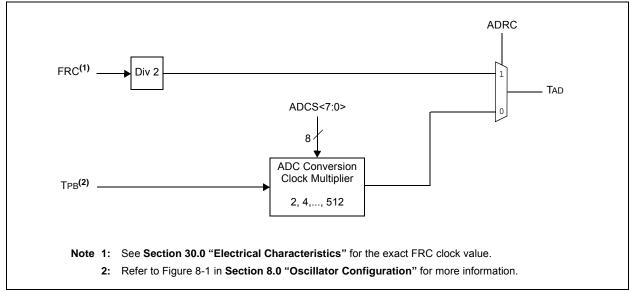
bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
- 0 = Continue module operation when the device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
 - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	-	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	—	—	_	_	-	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	ADRMUX<1:0>		PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> (2)	ALP ⁽²⁾		CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER


Legend:

0						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

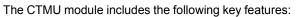
- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 functions as Chip Select
 - 01 = PMCS1 functions as PMA<14>
 - 00 = PMCS1 functions as PMA<14>
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	_	—	—	—	-			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	_	—	—	_	-			
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ADRC	_	—	SAMC<4:0> ⁽¹⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0			
7:0				ADCS<7:0> ⁽²⁾							

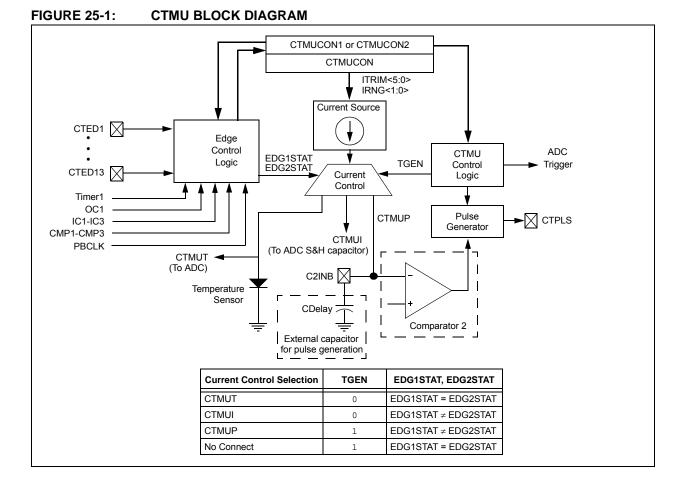
Legend:

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - **2:** This bit is not used if the ADRC (AD1CON3<15>) bit = 1.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- · Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 25-1.

© 2011-2016 Microchip Technology Inc.

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$				
Param. No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions				Conditions
Dl60a	licl	Input Low Injection Current	0		₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of the power pins.
DI60b	ІІСН	Input High Injection Current	0	—	+5 ^(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins.
DI60c	∑lict	Total Input Injection Current (sum of all I/O and Control pins)	-20 (6)	—	+20 (6)	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (VSS - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

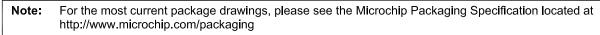
4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

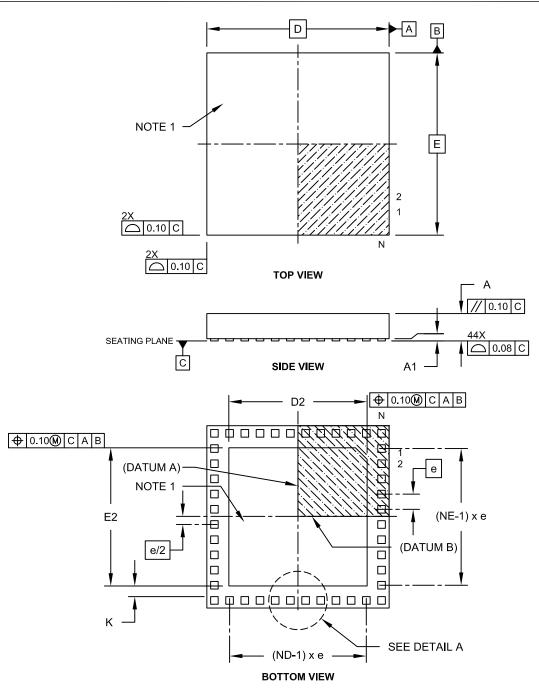
5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol Characteristics			Typical ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory ⁽³⁾						
D130	Eр	Cell Endurance	20,000	—	_	E/W	—	
D131	Vpr	VDD for Read	2.3	—	3.6	V	—	
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—	
D134	Tretd	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	_	10	_	mA	—	
	Tww	Word Write Cycle Time	—	411	_	es	See Note 4	
D136	Trw	Row Write Cycle Time	—	6675	_	Cycles	See Note 2,4	
D137	TPE	Page Erase Cycle Time	—	20011	_		See Note 4	
	TCE	Chip Erase Cycle Time	—	80180	_	FRC	See Note 4	

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY


Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.


2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (See Table 30-19) and FRC tuning values (See Register 8-2).

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Microchip Technology Drawing C04-157C Sheet 1 of 2