

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Details                    |                                                                                  |
|----------------------------|----------------------------------------------------------------------------------|
| Product Status             | Active                                                                           |
| Core Processor             | MIPS32® M4K™                                                                     |
| Core Size                  | 32-Bit Single-Core                                                               |
| Speed                      | 50MHz                                                                            |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                     |
| Number of I/O              | 21                                                                               |
| Program Memory Size        | 256КВ (256К х 8)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 64K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                      |
| Data Converters            | A/D 10x10b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                                   |
| Supplier Device Package    | 28-SOIC                                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f256b-50i-so |
|                            |                                                                                  |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 8: **PIN NAMES FOR 36-PIN USB DEVICES**

# 36-PIN VTLA (TOP VIEW)<sup>(1,2,3,5)</sup>

PIC32MX210F016C

|       | PIC32MX220F032C<br>PIC32MX230F064C<br>PIC32MX250F128C |       |                                                  |
|-------|-------------------------------------------------------|-------|--------------------------------------------------|
|       |                                                       |       | 36                                               |
|       |                                                       |       | 1                                                |
| Pin # | Full Pin Name                                         | Pin # | Full Pin Name                                    |
| 1     | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2             | 19    | TDO/RPB9/SDA1/CTED4/PMD3/RB9                     |
| 2     | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3               | 20    | RPC9/CTED7/RC9                                   |
| 3     | PGED4 <sup>(4)</sup> /AN6/RPC0/RC0                    | 21    | Vss                                              |
| 4     | PGEC4 <sup>(4)</sup> /AN7/RPC1/RC1                    | 22    | VCAP                                             |
| 5     | VDD                                                   | 23    | VDD                                              |
| 6     | Vss                                                   | 24    | PGED2/RPB10/D+/CTED11/RB10                       |
| 7     | OSC1/CLKI/RPA2/RA2                                    | 25    | PGEC2/RPB11/D-/RB11                              |
| 8     | OSC2/CLKO/RPA3/PMA0/RA3                               | 26    | VUSB3V3                                          |
| 9     | SOSCI/RPB4/RB4                                        | 27    | AN11/RPB13/CTPLS/PMRD/RB13                       |
| 10    | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4                        | 28    | CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14 |
| 11    | AN12/RPC3/RC3                                         | 29    | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15            |
| 12    | Vss                                                   | 30    | AVss                                             |
| 13    | Vdd                                                   | 31    | AVdd                                             |
| 14    | VDD                                                   | 32    | MCLR                                             |
| 15    | TMS/RPB5/USBID/RB5                                    | 33    | PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 |
| 16    | VBUS                                                  | 34    | PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1       |
| 17    | TDI/RPB7/CTED3/PMD5/INT0/RB7                          | 35    | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0        |
| 18    | TCK/RP88/SCL1/CTED10/PM04/RB8                         | 36    | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1       |

Note The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin 1: Select" for restrictions.

Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. 2:

The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. 3:

4: This pin function is not available on PIC32MX210F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

|          |                         | Pin Nu                            | mber <sup>(1)</sup> |                                 |             |                      |                                                                                      |
|----------|-------------------------|-----------------------------------|---------------------|---------------------------------|-------------|----------------------|--------------------------------------------------------------------------------------|
| Pin Name | 28-pin<br>QFN           | 28-pin<br>SSOP/<br>SPDIP/<br>SOIC | 36-pin<br>VTLA      | 44-pin<br>QFN/<br>TQFP/<br>VTLA | Pin<br>Type | Buffer<br>Type       | Description                                                                          |
| MCLR     | 26                      | 1                                 | 32                  | 18                              | I/P         | ST                   | Master Clear (Reset) input. This pin is an active-low Reset to the device.           |
| AVDD     | 25                      | 28                                | 31                  | 17                              | Р           | _                    | Positive supply for analog modules. This pin must be connected at all times.         |
| AVss     | 24                      | 27                                | 30                  | 16                              | Р           | —                    | Ground reference for analog modules                                                  |
| Vdd      | 10                      | 13                                | 5, 13, 14,<br>23    | 28, 40                          | Р           | _                    | Positive supply for peripheral logic and<br>I/O pins                                 |
| VCAP     | 17                      | 20                                | 22                  | 7                               | Р           | —                    | CPU logic filter capacitor connection                                                |
| Vss      | 5, 16                   | 8, 19                             | 6, 12, 21           | 6, 29, 39                       | Р           | _                    | Ground reference for logic and I/O pins.<br>This pin must be connected at all times. |
| VREF+    | 27                      | 2                                 | 33                  | 19                              | I           | Analog               | Analog voltage reference (high) input                                                |
| VREF-    | 28                      | 3                                 | 34                  | 20                              | I           | Analog               | Analog voltage reference (low) input                                                 |
| Legend:  | CMOS = CM<br>ST = Schmi |                                   | •                   |                                 |             | Analog =<br>O = Outp | Analog input P = Power<br>ut I = Input                                               |

#### TADI E 4 4. DINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

| · / /     |
|-----------|
| P = Powe  |
| l = Input |
| — = N/A   |
|           |

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

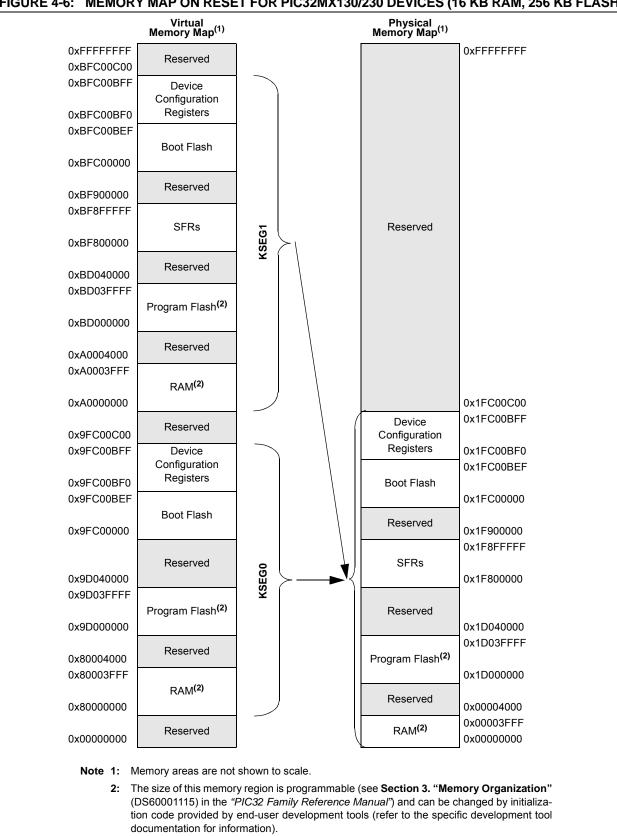
3: Pin number for PIC32MX2XX devices only.

# 4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers provide 4 GB unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs), and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX1XX/2XX 28/36/44-pin Family devices to execute from data memory.

Key features include:

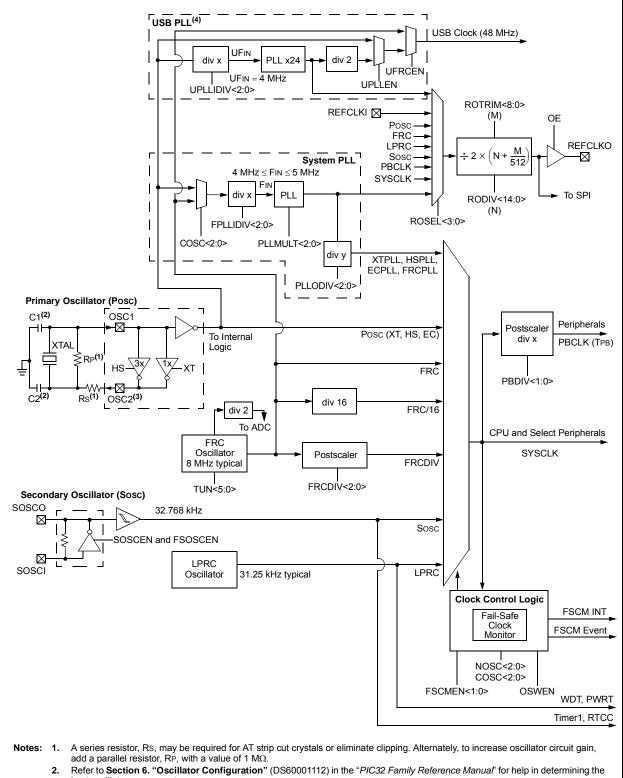

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space
- · Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

# 4.1 PIC32MX1XX/2XX 28/36/44-pin Family Memory Layout

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX1XX/2XX 28/36/44-pin Family devices are illustrated in Figure 4-1 through Figure 4-6.

Table 4-1 provides SFR memory map details.




# FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 256 KB FLASH)

| REGIST  | ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------|
| bit 9-8 | IS01<1:0>: Interrupt Subpriority bits                                                                                 |
|         | 11 = Interrupt subpriority is 3                                                                                       |
|         | 10 = Interrupt subpriority is 2                                                                                       |
|         | 01 = Interrupt subpriority is 1                                                                                       |
|         | 00 = Interrupt subpriority is 0                                                                                       |
| bit 7-5 | Unimplemented: Read as '0'                                                                                            |
| bit 4-2 | IP00<2:0>: Interrupt Priority bits                                                                                    |
|         | 111 = Interrupt priority is 7                                                                                         |
|         | •                                                                                                                     |
|         | •                                                                                                                     |
|         | •                                                                                                                     |
|         | 010 = Interrupt priority is 2                                                                                         |
|         | 001 = Interrupt priority is 1                                                                                         |
|         | 000 = Interrupt is disabled                                                                                           |
| bit 1-0 | IS00<1:0>: Interrupt Subpriority bits                                                                                 |
|         | 11 = Interrupt subpriority is 3                                                                                       |
|         | 10 = Interrupt subpriority is 2                                                                                       |
|         | 01 = Interrupt subpriority is 1                                                                                       |
|         | 00 = Interrupt subpriority is 0                                                                                       |
| Note:   | This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions. |

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# FIGURE 8-1: OSCILLATOR DIAGRAM



 Refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual" for help in determinin best oscillator components.

3. The PBCLK out is only available on the OSC2 pin in certain clock modes.

4. The USB PLL is only available on PIC32MX2XX devices.

# 9.1 DMA Control Registers

## TABLE 9-1: DMA GLOBAL REGISTER MAP

| ess                         |                                 | Ċ,        |       |       |       |         |         |       |      | Bi       | ts        |      |      |      |      |      |           |      | s         |
|-----------------------------|---------------------------------|-----------|-------|-------|-------|---------|---------|-------|------|----------|-----------|------|------|------|------|------|-----------|------|-----------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12   | 27/11   | 26/10 | 25/9 | 24/8     | 23/7      | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1      | 16/0 | All Reset |
| 2000                        | DMACON                          | 31:16     | _     | _     | -     | —       | —       | _     | —    | —        | —         | -    | -    | _    | -    | -    | —         | _    | 0000      |
| 3000                        | DIVIACON                        | 15:0      | ON    | —     | _     | SUSPEND | DMABUSY | —     | _    | —        | _         | —    | —    | —    | —    | —    | —         | _    | 0000      |
| 2010                        | DMASTAT                         | 31:16     | -     | _     | —     | —       | —       | —     | —    | —        | _         | _    | _    | _    | _    | —    | —         | _    | 0000      |
| 3010                        | DIVIASTAT                       | 15:0      | -     | _     | —     | —       | —       | —     | —    | —        | _         | _    | _    | _    | RDWR | DI   | MACH<2:0> | .(2) | 0000      |
| 3020                        | DMAADDR                         | 31:16     |       |       |       |         |         |       |      | DMAADD   | D-31:05   |      |      |      |      |      |           |      | 0000      |
| 3020                        | DIVIAADDR                       | 15:0      |       |       |       |         |         |       |      | DIVIAADL | vix~51.02 |      |      |      |      |      |           |      | 0000      |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

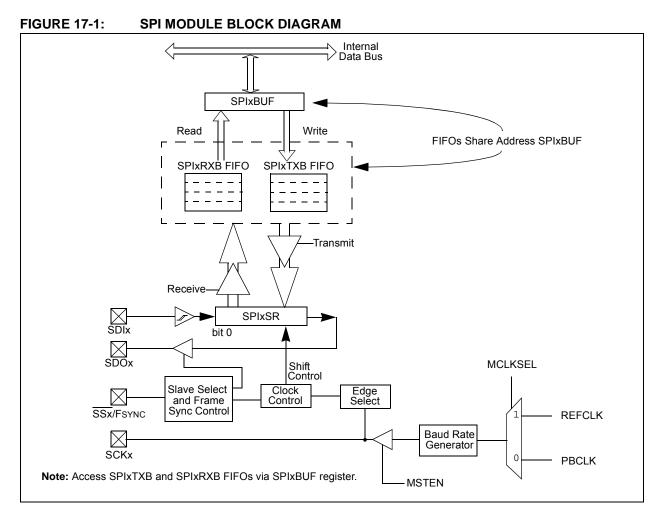
### TABLE 9-2: DMA CRC REGISTER MAP

| ess                         |                                 | â         |       |                | -     |       |       |           |      | В      | ts        |        | -      |      |      |      |           |      |            |
|-----------------------------|---------------------------------|-----------|-------|----------------|-------|-------|-------|-----------|------|--------|-----------|--------|--------|------|------|------|-----------|------|------------|
| Virtual Address<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14          | 29/13 | 28/12 | 27/11 | 26/10     | 25/9 | 24/8   | 23/7      | 22/6   | 21/5   | 20/4 | 19/3 | 18/2 | 17/1      | 16/0 | All Resets |
| 2020                        | DCRCCON                         | 31:16     | —     | _              | BYTO  | <1:0> | WBO   | —         | —    | BITO   | _         | —      | —      | _    | _    | _    | —         | _    | 0000       |
| 3030                        | DURUUUN                         | 15:0      | —     | _              | —     |       |       | PLEN<4:0> |      |        | CRCEN     | CRCAPP | CRCTYP | —    | —    | C    | CRCCH<2:0 | >    | 0000       |
| 2040                        | DCRCDATA                        | 31:16     |       |                |       |       |       |           |      |        | TA ~21:05 |        |        |      |      |      |           |      | 0000       |
| 3040                        | DURUDAIA                        | 15:0      |       | DCRCDATA<31:0> |       |       |       |           |      |        |           |        |        |      |      |      |           |      |            |
| 3050                        | DCRCXOR                         | 31:16     |       | DCRCXOR<31:0>  |       |       |       |           |      |        |           |        |        |      |      |      |           |      |            |
| 3050                        | DUNUAUR                         | 15:0      |       |                |       |       |       |           |      | DCRCAU | N-51.02   |        |        |      |      |      |           |      | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

| TABL                        | .E 11-6:         | PEF       | RIPHER | AL PIN | SELEC | T INPU | T REGI | STER M | AP (CC | NTINU | ED)  |      |      |      |      |       |          |      |            |
|-----------------------------|------------------|-----------|--------|--------|-------|--------|--------|--------|--------|-------|------|------|------|------|------|-------|----------|------|------------|
| sse                         |                  |           |        |        |       |        |        |        |        | В     | its  |      |      |      |      |       |          |      |            |
| Virtual Address<br>(BF80_#) | Register<br>Name | Bit Range | 31/15  | 30/14  | 29/13 | 28/12  | 27/11  | 26/10  | 25/9   | 24/8  | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2  | 17/1     | 16/0 | All Resets |
| 5454                        |                  | 31:16     | _      | —      | —     | —      | —      | —      | -      | —     | —    | —    | -    | -    | —    | -     | —        | —    | 0000       |
| FA54                        | U1CTSR           | 15:0      | _      | _      | _     | _      | _      | _      | _      | _     | _    | _    | _    | _    |      | U1CTS | R<3:0>   |      | 0000       |
| 5450                        |                  | 31:16     | _      | _      | _     | _      | _      | _      | _      | _     | _    | _    | _    | _    | _    | _     | _        | _    | 0000       |
| FA58                        | U2RXR            | 15:0      | _      | _      | _     | _      | _      | _      | _      | _     | _    | _    | _    | _    |      | U2RXI | R<3:0>   |      | 0000       |
| FAFO                        |                  | 31:16     | _      | —      | —     |        | _      | _      | —      | _     |      | —    | -    | —    | —    | —     |          |      | 0000       |
| FA5C                        | U2CTSR           | 15:0      | —      | —      | —     |        | —      | —      | —      | _     |      | —    |      | —    |      | U2CTS | R<3:0>   |      | 0000       |
| FA84                        | SDI1R            | 31:16     | —      | _      | —     |        | _      | —      | —      | _     |      | _    |      | _    | _    | _     |          |      | 0000       |
| FA04                        | SDIR             | 15:0      | —      | _      | —     |        | _      | —      | —      | _     |      | _    |      | _    |      | SDI1F | R<3:0>   |      | 0000       |
| FA88                        | SS1R             | 31:16     | —      | —      | —     | —      | —      | —      | —      | —     | —    | —    | —    | —    | —    | —     | —        | -    | 0000       |
| FA00                        | 331K             | 15:0      | —      | —      | —     | —      | —      | —      | —      | —     | —    | —    | —    | —    |      | SS1R  | <3:0>    |      | 0000       |
| FA90                        | SDI2R            | 31:16     | —      | —      | —     | —      | —      | —      | —      | —     | —    | —    | —    | —    | —    | —     | —        | -    | 0000       |
| FA90                        | SDIZK            | 15:0      | —      | —      | —     | —      | —      | —      | —      | —     | —    | —    | —    | —    |      | SDI2F | R<3:0>   |      | 0000       |
| FA94                        | SS2R             | 31:16     | _      | —      | —     | _      | —      | —      | —      | —     | _    | —    | -    | —    | —    | —     | —        | —    | 0000       |
| 1 A94                       | 332R             | 15:0      | _      | —      | —     | _      | —      | —      | —      | —     | _    | —    | -    | —    |      | SS2R  | <3:0>    |      | 0000       |
| EVBS                        | REFCLKIR         | 31:16     | _      | —      | —     | _      | —      | —      | —      | —     | _    | —    | -    | —    | —    | —     | —        | —    | 0000       |
| I ADO                       |                  | 15:0      | —      | —      | -     | —      | —      | —      | —      | —     | —    | —    | —    | —    |      | REFCL | (IR<3:0> |      | 0000       |


PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# 17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontrollers. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola<sup>®</sup> SPI and SIOP interfaces. Some of the key features of the SPI module are:

- Master mode and Slave mode support
- Four clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
   FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
  - I<sup>2</sup>S protocol
  - Left-justified
  - Right-justified
  - PCM



| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        |                   | _                 | _                 | _                 | —                 | -                 | _                | _                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                 | _                 |                   | —                 | —                 | -                 | _                | _                |
| 45.0         | R/W-0             | U-0               | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0            | R/W-0            |
| 15:8         | 0N <sup>(1)</sup> | _                 | SIDL              | IREN              | RTSMD             | _                 | UEN              | <1:0>            |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | WAKE              | LPBACK            | ABAUD             | RXINV             | BRGH              | PDSEL             | <1:0>            | STSEL            |

#### REGISTER 19-1: UXMODE: UARTX MODE REGISTER

# Legend:

| Logona.           |                  |                                    |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit<sup>(1)</sup>
  - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by the UEN<1:0> and UTXEN control bits.
  - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'

#### bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
- 0 = Continue module operation when the device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
  - 1 = IrDA is enabled
  - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
  - $1 = \overline{\text{UxRTS}}$  pin is in Simplex mode
  - $0 = \overline{\text{UxRTS}}$  pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
  - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
  - 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
  - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
  - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
  - 1 = Wake-up enabled
  - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
  - 1 = Loopback mode is enabled
  - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

# REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

| bit 5   | <ul> <li>ABAUD: Auto-Baud Enable bit</li> <li>1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion</li> <li>0 = Baud rate measurement disabled or completed</li> </ul> |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 4   | RXINV: Receive Polarity Inversion bit<br>1 = UxRX Idle state is '0'<br>0 = UxRX Idle state is '1'                                                                                                                                                           |
| bit 3   | BRGH: High Baud Rate Enable bit<br>1 = High-Speed mode – 4x baud clock enabled<br>0 = Standard Speed mode – 16x baud clock enabled                                                                                                                          |
| bit 2-1 | PDSEL<1:0>: Parity and Data Selection bits<br>11 = 9-bit data, no parity<br>10 = 8-bit data, odd parity<br>01 = 8-bit data, even parity<br>00 = 8-bit data, no parity                                                                                       |
| bit 0   | <b>STSEL:</b> Stop Selection bit<br>1 = 2 Stop bits<br>0 = 1 Stop bit                                                                                                                                                                                       |

**Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5  | Bit<br>28/20/12/4 | Bit<br>27/19/11/3   | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|--------------------|-------------------|---------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0                | U-0               | U-0                 | U-0               | U-0              | U-0              |
| 31:24        | _                 | _                 | _                  | _                 | _                   | _                 | -                | _                |
| 00.40        | U-0               | U-0               | U-0                | U-0               | U-0                 | U-0               | U-0              | U-0              |
| 23:16        | —                 | _                 | _                  | _                 | _                   | _                 | -                | —                |
| 45.0         | R/W-0             | U-0               | R/W-0              | R/W-0             | R/W-0               | R/W-0             | R/W-0            | R/W-0            |
| 15:8         | 0N <sup>(1)</sup> | _                 | SIDL               | ADRML             | JX<1:0>             | PMPTTL            | PTWREN           | PTRDEN           |
| 7.0          | R/W-0             | R/W-0             | R/W-0              | U-0               | R/W-0               | U-0               | R/W-0            | R/W-0            |
| 7:0          | CSF<              | 1:0> <b>(2)</b>   | ALP <sup>(2)</sup> | _                 | CS1P <sup>(2)</sup> | _                 | WRSP             | RDSP             |

#### REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER

#### Legend:

| 0                 |                               |                      |                                    |  |  |  |  |  |
|-------------------|-------------------------------|----------------------|------------------------------------|--|--|--|--|--|
| R = Readable bit  | Readable bit W = Writable bit |                      | U = Unimplemented bit, read as '0' |  |  |  |  |  |
| -n = Value at POR | '1' = Bit is set              | '0' = Bit is cleared | x = Bit is unknown                 |  |  |  |  |  |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit<sup>(1)</sup>
  - 1 = PMP enabled
  - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
  - 1 = Discontinue module operation when the device enters Idle mode
  - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
  - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
  - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
  - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
  - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
  - 1 = PMP module uses TTL input buffers
  - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
  - 1 = PMWR/PMENB port enabled
  - 0 = PMWR/PMENB port disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
  - 1 = PMRD/PMWR port enabled
  - 0 = PMRD/PMWR port disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits<sup>(2)</sup>
  - 11 = Reserved
  - 10 = PMCS1 functions as Chip Select
  - 01 = PMCS1 functions as PMA<14>
  - 00 = PMCS1 functions as PMA<14>
- bit 5 ALP: Address Latch Polarity bit<sup>(2)</sup>
  - 1 = Active-high (PMALL and PMALH)
  - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
  - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
    - 2: These bits have no effect when their corresponding pins are used as address lines.

# 21.1 RTCC Control Registers

# TABLE 21-1: RTCC REGISTER MAP

| ess                         |                                 | ē         |        | Bits  |          |          |       |           |        | ŝ    |          |           |           |         |         |         |            |       |            |
|-----------------------------|---------------------------------|-----------|--------|-------|----------|----------|-------|-----------|--------|------|----------|-----------|-----------|---------|---------|---------|------------|-------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15  | 30/14 | 29/13    | 28/12    | 27/11 | 26/10     | 25/9   | 24/8 | 23/7     | 22/6      | 21/5      | 20/4    | 19/3    | 18/2    | 17/1       | 16/0  | All Resets |
| 0200                        | RTCCON                          | 31:16     | —      | _     | _        | -        | —     | —         |        |      |          |           | CAL<      | <9:0>   |         |         |            |       | 0000       |
| 0200                        | RICCON                          | 15:0      | ON     | _     | SIDL     | —        | —     | -         | —      | _    | RTSECSEL | RTCCLKON  | —         | _       | RTCWREN | RTCSYNC | HALFSEC    | RTCOE | 0000       |
| 0210                        | RTCALRM                         | 31:16     | _      |       | _        | _        | —     |           | _      |      | _        | -         | —         | _       | _       | _       | _          | —     | 0000       |
| 0210                        | IN OALIN                        | 15:0      | ALRMEN | CHIME | PIV      | ALRMSYNC |       | AMASI     | K<3:0> |      |          |           |           | ARPT    | <7:0>   |         |            |       | 0000       |
| 0220                        | RTCTIME                         | 31:16     | —      | _     | HR1      | 0<1:0>   |       | HR01      | <3:0>  |      | —        | М         | IN10<2:0> |         |         | MIN01   | <3:0>      |       | xxxx       |
| 0220                        | INTO THME                       | 15:0      | —      |       | SEC10<2: | 0>       |       | SEC07     | 1<3:0> |      | —        | —         | —         | —       | —       | —       | —          | _     | xx00       |
| 0230                        | RTCDATE                         | 31:16     |        | YEAR  | 10<3:0>  |          |       | YEAR0     | 1<3:0> |      | —        | —         | —         | MONTH10 |         | MONTH   | 01<3:0>    |       | xxxx       |
| 0230                        | RICDAIL                         | 15:0      | —      | _     | DAY      | 10<1:0>  |       | DAY01     | 1<3:0> |      | —        | _         | —         | _       | —       | W       | /DAY01<2:0 | >     | xx00       |
| 0240                        | ALRMTIME                        | 31:16     | _      |       | HR1      | 0<1:0>   |       | HR01<3:0> |        | _    | М        | IN10<2:0> | ,         |         | MIN01   | <3:0>   |            | xxxx  |            |
| 0240                        |                                 | 15:0      | —      |       | SEC10<2: | 0>       |       | SEC02     | 1<3:0> |      | _        |           | —         | _       | —       | —       | _          | —     | xx00       |
| 0250                        | ALRMDATE                        | 31:16     | —      | _     | _        | _        | _     | _         | _      |      | _        | -         | —         | MONTH10 |         | MONTH   | 01<3:0>    |       | 00xx       |
| 0250                        |                                 | 15:0      |        | DAY1  | 0<3:0>   |          |       | DAY01     | 1<3:0> |      | _        | _         | _         | _       | _       | W       | /DAY01<2:0 | >     | xx0x       |

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5     | Bit<br>28/20/12/4      | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-----------------------|------------------------|-------------------|-------------------|------------------|------------------|--|
| 24.24        | U-0               | U-0               | U-0                   | U-0                    | U-0               | U-0               | U-0              | U-0              |  |
| 31:24        | _                 | —                 | _                     | —                      | _                 |                   | _                | —                |  |
| 22:16        | U-0               | U-0               | U-0                   | U-0                    | U-0               | U-0               | U-0              | U-0              |  |
| 23:16        | -                 | —                 | -                     | —                      | _                 |                   | -                | —                |  |
| 45.0         | U-0               | U-0               | R/W-0                 | R/W-0                  | U-0               | U-0               | U-0              | U-0              |  |
| 15:8         |                   | —                 | IOLOCK <sup>(1)</sup> | PMDLOCK <sup>(1)</sup> |                   |                   |                  | —                |  |
| 7.0          | U-0               | U-0               | U-0                   | U-0                    | R/W-1             | U-0               | U-1              | R/W-1            |  |
| 7:0          | _                 |                   |                       | _                      | JTAGEN            |                   | _                | TDOEN            |  |

# **REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER**

# Legend:

| Logona.                           |                  |                                    |                    |  |  |  |
|-----------------------------------|------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

#### bit 31-14 Unimplemented: Read as '0'

- bit 13 IOLOCK: Peripheral Pin Select Lock bit<sup>(1)</sup>
  - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed.
  - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed.
- bit 12 PMDLOCK: Peripheral Module Disable bit<sup>(1)</sup>
  - 1 = Peripheral module is locked. Writes to PMD registers is not allowed.
  - 0 = Peripheral module is not locked. Writes to PMD registers is allowed.

#### bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
  - 1 = Enable the JTAG port
    - 0 = Disable the JTAG port
- bit 2-1 Unimplemented: Read as '1'
- bit 0 **TDOEN:** TDO Enable for 2-Wire JTAG bit
  - 1 = 2-wire JTAG protocol uses TDO
  - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

# 28.0 INSTRUCTION SET

The PIC32MX1XX/2XX family instruction set complies with the MIPS32<sup>®</sup> Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

**Note:** Refer to *"MIPS32<sup>®</sup> Architecture for Programmers Volume II: The MIPS32<sup>®</sup> Instruction Set"* at www.imgtec.com for more information. NOTES:

# TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

| AC CHARACTERISTICS |        |                                                                     | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |       |         |       |       |                                      |  |
|--------------------|--------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------|-------|--------------------------------------|--|
| Param.<br>No.      | Symbol | Characteristics <sup>(1)</sup>                                      |                                                                                                                                                                                                                                                                                     | Min.  | Typical | Max.  | Units | Conditions                           |  |
| OS50               | Fplli  | PLL Voltage Controlled<br>Oscillator (VCO) Input<br>Frequency Range |                                                                                                                                                                                                                                                                                     | 3.92  | _       | 5     | MHz   | ECPLL, HSPLL, XTPLL,<br>FRCPLL modes |  |
| OS51               | Fsys   | On-Chip VCO System<br>Frequency                                     |                                                                                                                                                                                                                                                                                     | 60    | —       | 120   | MHz   | _                                    |  |
| OS52               | TLOCK  | PLL Start-up Time (Lock Time)                                       |                                                                                                                                                                                                                                                                                     | _     | _       | 2     | ms    | —                                    |  |
| OS53               | DCLK   | CLKO Stability <sup>(2)</sup><br>(Period Jitter or Cumulative)      |                                                                                                                                                                                                                                                                                     | -0.25 | —       | +0.25 | %     | Measured over 100 ms<br>period       |  |

Note 1: These parameters are characterized, but not tested in manufacturing.

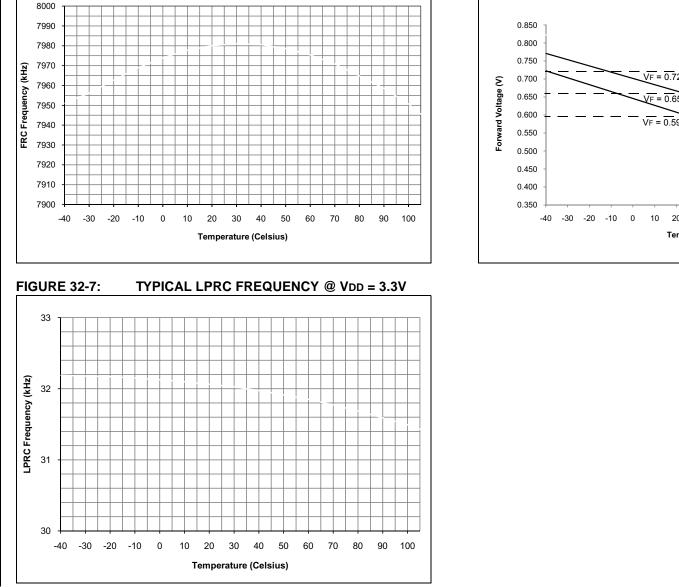
2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

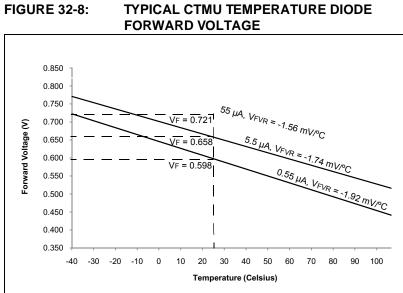
For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

# TABLE 30-19: INTERNAL FRC ACCURACY


| AC CHARACTERISTICS                              |                 | Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le Ta \le +105^{\circ}C$ for V-temp |         |      |       |            |  |  |  |
|-------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|--|--|--|
| Param.<br>No.                                   | Characteristics | Min.                                                                                                                                                                                               | Typical | Max. | Units | Conditions |  |  |  |
| Internal FRC Accuracy @ 8.00 MHz <sup>(1)</sup> |                 |                                                                                                                                                                                                    |         |      |       |            |  |  |  |
| F20b                                            | FRC             | -0.9                                                                                                                                                                                               |         | +0.9 | %     | _          |  |  |  |

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.


## TABLE 30-20: INTERNAL LPRC ACCURACY

| АС СНА                          | RACTERISTICS    | $\label{eq:standard operating Conditions: 2.3V to 3.6V} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$ |         |      |       |            |  |  |  |
|---------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|--|--|--|
| Param.<br>No.                   | Characteristics | Min.                                                                                                                       | Typical | Max. | Units | Conditions |  |  |  |
| LPRC @ 31.25 kHz <sup>(1)</sup> |                 |                                                                                                                            |         |      |       |            |  |  |  |
| F21                             | LPRC            | -15                                                                                                                        | —       | +15  | %     | _          |  |  |  |

**Note 1:** Change of LPRC frequency as VDD changes.



TYPICAL FRC FREQUENCY @ VDD = 3.3V



**FIGURE 32-6:** 

# 33.0 PACKAGING INFORMATION

# 33.1 Package Marking Information

28-Lead SOIC



### 28-Lead SPDIP



Example



# Example



### 28-Lead SSOP



### 28-Lead QFN



Example



# Example



| Legenc | I: XXX<br>Y<br>YY<br>WW<br>NNN<br>@3<br>* | Customer-specific information<br>Year code (last digit of calendar year)<br>Year code (last 2 digits of calendar year)<br>Week code (week of January 1 is week '01')<br>Alphanumeric traceability code<br>Pb-free JEDEC designator for Matte Tin (Sn)<br>This package is Pb-free. The Pb-free JEDEC designator (@3)<br>can be found on the outer packaging for this package. |  |  |  |  |
|--------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Note:  |                                           |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

# **Revision D (February 2012)**

All occurrences of VUSB were changed to: VUSB3V3. In addition, text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-3.

# TABLE A-3: MAJOR SECTION UPDATES

| Section                                                                                      | Update Description                                                                                                                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| "32-bit Microcontrollers (up to 128                                                          | Corrected a part number error in all pin diagrams.                                                                                                                                |  |  |  |  |
| KB Flash and 32 KB SRAM) with<br>Audio and Graphics Interfaces, USB,<br>and Advanced Analog" | Updated the DMA Channels (Programmable/Dedicated) column in the PIC32MX1XX General Purpose Family Features (see Table 1).                                                         |  |  |  |  |
| 1.0 "Device Overview"                                                                        | Added the TQFP and VTLA packages to the 44-pin column heading and updated the pin numbers for the SCL1, SCL2, SDA1, and SDA2 pins in the Pinout I/O Descriptions (see Table 1-1). |  |  |  |  |
| 7.0 "Interrupt Controller"                                                                   | Updated the Note that follows the features.                                                                                                                                       |  |  |  |  |
|                                                                                              | Updated the Interrupt Controller Block Diagram (see Figure 7-1).                                                                                                                  |  |  |  |  |
| 29.0 "Electrical Characteristics"                                                            | Updated the Maximum values for parameters DC20-DC24, and the Minimum value for parameter DC21 in the Operating Current (IDD) DC Characteristics (see Table 29-5).                 |  |  |  |  |
|                                                                                              | Updated all Minimum and Maximum values for the Idle Current (IIDLE) DC Characteristics (see Table 29-6).                                                                          |  |  |  |  |
|                                                                                              | Updated the Maximum values for parameters DC40k, DC40l, DC40n, and DC40m in the Power-down Current (IPD) DC Characteristics (see Table 29-7).                                     |  |  |  |  |
|                                                                                              | Changed the minimum clock period for SCKx from 40 ns to 50 ns in Note 3 of the SPIx Master and Slave Mode Timing Requirements (see Table 29-26 through Table 29-29).              |  |  |  |  |
| 30.0 "DC and AC Device<br>Characteristics Graphs"                                            | Updated the Typical IIDLE Current @ VDD = 3.3V graph (see Figure 30-5).                                                                                                           |  |  |  |  |