Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 40MHz | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 256KB (256K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 64K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 10x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SOIC (0.295", 7.50mm Width) | | Supplier Device Package | 28-SOIC | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f256b-v-so | ### **Table of Contents** | 1.0 | Device Overview | 19 | |-------|--|-----| | 2.0 | Guidelines for Getting Started with 32-bit MCUs. | | | 3.0 | CPU. | | | 4.0 | Memory Organization | | | 5.0 | Flash Program Memory | | | 6.0 | Resets | | | 7.0 | Interrupt Controller | | | 8.0 | Oscillator Configuration | 73 | | 9.0 | Direct Memory Access (DMA) Controller | 83 | | 10.0 | USB On-The-Go (OTG) | 103 | | 11.0 | I/O Ports | 127 | | 12.0 | Timer1 | 143 | | 13.0 | Timer2/3, Timer4/5 | 147 | | 14.0 | Watchdog Timer (WDT) | 153 | | 15.0 | Input Capture | 157 | | | Output Compare | | | 17.0 | Serial Peripheral Interface (SPI) | 165 | | 18.0 | Inter-Integrated Circuit (I ² C) | | | 19.0 | Universal Asynchronous Receiver Transmitter (UART) | 181 | | | Parallel Master Port (PMP) | | | | Real-Time Clock and Calendar (RTCC) | | | 22.0 | 10-bit Analog-to-Digital Converter (ADC) | 209 | | 23.0 | Comparator | | | 24.0 | Comparator Voltage Reference (CVREF) | 223 | | 25.0 | Charge Time Measurement Unit (CTMU) | 227 | | 26.0 | Power-Saving Features | 233 | | 27.0 | Special Features | 239 | | 28.0 | Instruction Set | | | 29.0 | Development Support | 253 | | | Electrical Characteristics | | | | 50 MHz Electrical Characteristics | | | | DC and AC Device Characteristics Graphs | | | | Packaging Information | | | | Aicrochip Web Site | | | | omer Change Notification Service | | | | omer Support | | | Produ | uct Identification System | 342 | ### REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|----------------------| | 24.04 | U-0 | 31:24 | _ | _ | - | _ | _ | | _ | _ | | 22:46 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | U-0 | 15.6 | _ | _ | _ | _ | _ | _ | _ | _ | | 7:0 | U-0 W-0, HC | | 7:0 | _ | _ | _ | _ | _ | _ | _ | SWRST ⁽¹⁾ | **Legend:** HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-1 Unimplemented: Read as '0' bit 0 **SWRST:** Software Reset Trigger bit⁽¹⁾ 1 = Enable Software Reset event 0 = No effect **Note 1:** The system unlock sequence must be performed before the SWRST bit is written. Refer to **Section 6.** "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details. TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) | Intermed Course(1) | IRQ | Vector | | Interru | pt Bit Location | | Persistent | | |------------------------------------|-----|--------|----------|----------|-----------------|--------------|------------|--| | Interrupt Source ⁽¹⁾ | # | # | Flag | Enable | Priority | Sub-priority | Interrupt | | | U1E – UART1 Fault | 39 | 32 | IFS1<7> | IEC1<7> | IPC8<4:2> | IPC8<1:0> | Yes | | | U1RX – UART1 Receive Done | 40 | 32 | IFS1<8> | IEC1<8> | IPC8<4:2> | IPC8<1:0> | Yes | | | U1TX – UART1 Transfer Done | 41 | 32 | IFS1<9> | IEC1<9> | IPC8<4:2> | IPC8<1:0> | Yes | | | I2C1B – I2C1 Bus Collision Event | 42 | 33 | IFS1<10> | IEC1<10> | IPC8<12:10> | IPC8<9:8> | Yes | | | I2C1S - I2C1 Slave Event | 43 | 33 | IFS1<11> | IEC1<11> | IPC8<12:10> | IPC8<9:8> | Yes | | | I2C1M – I2C1 Master Event | 44 | 33 | IFS1<12> | IEC1<12> | IPC8<12:10> | IPC8<9:8> | Yes | | | CNA – PORTA Input Change Interrupt | 45 | 34 | IFS1<13> | IEC1<13> | IPC8<20:18> | IPC8<17:16> | Yes | | | CNB – PORTB Input Change Interrupt | 46 | 34 | IFS1<14> | IEC1<14> | IPC8<20:18> | IPC8<17:16> | Yes | | | CNC – PORTC Input Change Interrupt | 47 | 34 | IFS1<15> | IEC1<15> | IPC8<20:18> | IPC8<17:16> | Yes | | | PMP – Parallel Master Port | 48 | 35 | IFS1<16> | IEC1<16> | IPC8<28:26> | IPC8<25:24> | Yes | | | PMPE – Parallel Master Port Error | 49 | 35 | IFS1<17> | IEC1<17> | IPC8<28:26> | IPC8<25:24> | Yes | | | SPI2E – SPI2 Fault | 50 | 36 | IFS1<18> | IEC1<18> | IPC9<4:2> | IPC9<1:0> | Yes | | | SPI2RX – SPI2 Receive Done | 51 | 36 | IFS1<19> | IEC1<19> | IPC9<4:2> | IPC9<1:0> | Yes | | | SPI2TX – SPI2 Transfer Done | 52 | 36 | IFS1<20> | IEC1<20> | IPC9<4:2> | IPC9<1:0> | Yes | | | U2E – UART2 Error | 53 | 37 | IFS1<21> | IEC1<21> | IPC9<12:10> | IPC9<9:8> | Yes | | | U2RX – UART2 Receiver | 54 | 37 | IFS1<22> | IEC1<22> | IPC9<12:10> | IPC9<9:8> | Yes | | | U2TX – UART2 Transmitter | 55 | 37 | IFS1<23> | IEC1<23> | IPC9<12:10> | IPC9<9:8> | Yes | | | I2C2B – I2C2 Bus Collision Event | 56 | 38 | IFS1<24> | IEC1<24> | IPC9<20:18> | IPC9<17:16> | Yes | | | I2C2S - I2C2 Slave Event | 57 | 38 | IFS1<25> | IEC1<25> | IPC9<20:18> | IPC9<17:16> | Yes | | | I2C2M – I2C2 Master Event | 58 | 38 | IFS1<26> | IEC1<26> | IPC9<20:18> | IPC9<17:16> | Yes | | | CTMU – CTMU Event | 59 | 39 | IFS1<27> | IEC1<27> | IPC9<28:26> | IPC9<25:24> | Yes | | | DMA0 – DMA Channel 0 | 60 | 40 | IFS1<28> | IEC1<28> | IPC10<4:2> | IPC10<1:0> | No | | | DMA1 – DMA Channel 1 | 61 | 41 | IFS1<29> | IEC1<29> | IPC10<12:10> | IPC10<9:8> | No | | | DMA2 – DMA Channel 2 | 62 | 42 | IFS1<30> | IEC1<30> | IPC10<20:18> | IPC10<17:16> | No | | | DMA3 – DMA Channel 3 | 63 | 43 | IFS1<31> | IEC1<31> | IPC10<28:26> | IPC10<25:24> | No | | | Lowest Natural Order Priority | | | | | | | | | Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals. ### 7.1 Interrupt Control Registers ### TABLE 7-2: INTERRUPT REGISTER MAP | ess | | | | | | | | | | Bits | | | | | | | | | | |-----------------------------|---------------------------------|---------------|--------|--------|--------|-------------|-------------|-----------|------------|---------|--------|----------|----------|---------------------|----------------------|--------|--------|--------|---------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All
Resets | | 1000 | INTCON | 31:16 | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1000 | IIIIOOII | 15:0 | _ | _ | _ | MVEC | _ | | TPC<2:0> | | | _ | _ | INT4EP | INT3EP | INT2EP | INT1EP | INT0EP | 0000 | | 1010 | INTSTAT ⁽³⁾ | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | 0000 | | 1010 | INTOTAL | 15:0 | _ | _ | _ | _ | _ | | SRIPL<2:0> | | | _ | | | VEC<5:0 |)> | | | 0000 | | 1020 | IPTMR | 31:16
15:0 | | | | | | | | IPTMR<3 | 1:0> | | | | | | | | 0000 | | | | 31:16 | FCEIF | RTCCIF | FSCMIF | AD1IF | OC5IF | IC5IF | IC5EIF | T5IF | INT4IF | OC4IF | IC4IF | IC4EIF | T4IF | INT3IF | OC3IF | IC3IF | 0000 | | 1030 | IFS0 | 15:0 | IC3EIF | T3IF | INT2IF | OC2IF | IC2IF | IC2EIF | T2IF | INT1IF | OC1IF | IC1IF | IC1EIF | T1IF | INTOIF | CS1IF | CS0IF | CTIF | 0000 | | | | 31:16 | DMA3IF | DMA2IF | DMA1IF | DMA0IF | CTMUIF | I2C2MIF | I2C2SIF | I2C2BIF | U2TXIF | U2RXIF | U2EIF | SPI2TXIF | SPI2RXIF | | PMPEIF | PMPIF | 0000 | | 1040 | IFS1 | 15:0 | CNCIF | CNBIF | CNAIF | I2C1MIF | I2C1SIF | I2C2IVIIF | U1TXIF | U1RXIF | U1EIF | SPI1TXIF | SPI1RXIF | SPI2TXIF
SPI1EIF | USBIF ⁽²⁾ | CMP3IF | CMP2IF | CMP1IF | 0000 | | | | 31:16 | FCEIE | RTCCIE | FSCMIE | AD1IE | OC5IE | IC5IE | IC5EIE | T5IE | INT4IE | OC4IE | IC4IE | IC4EIE | T4IE | INT3IE | OC3IE | IC3IE | 0000 | | 1060 | IEC0 | 15:0 | IC3EIE | T3IE | INT2IE | OC2IE | IC2IE | IC2EIE | T2IE | INT1IE | OC1IE | IC1IE | IC1EIE | T1IE | INTOIE | CS1IE | CS0IE | CTIE | 0000 | | | | 31:16 | DMA3IE | DMA2IE | DMA1IE | DMA0IE | CTMUIE | I2C2MIE | I2C2SIE | I2C2BIE | U2TXIE | U2RXIE | U2EIE | SPI2TXIE | SPI2RXIE | | PMPEIE | PMPIE | 0000 | | 1070 | IEC1 | 15:0 | CNCIE | CNBIE | CNAIE | I2C1MIE | I2C1SIE | I2C1BIE | U1TXIE | U1RXIE | U1EIE | SPI1TXIE | SPI1RXIE | SPI1EIE | USBIE ⁽²⁾ | CMP3IE | | | | | | | 31:16 | _ | _ | _ | | INT0IP<2:0> | | INTOIS | | _ | _ | _ | | S1IP<2:0> | 1 | CS1IS | l | 0000 | | 1090 | IPC0 | 15:0 | _ | _ | _ | | CS0IP<2:0> | | CS0IS | | _ | _ | _ | | CTIP<2:0> | | | <1:0> | 0000 | | | | 31:16 | _ | _ | _ | | INT1IP<2:0> | | INT1IS | <1:0> | | _ | _ | С | C1IP<2:0> | | OC1IS | S<1:0> | 0000 | | 10A0 | IPC1 | 15:0 | _ | _ | _ | | IC1IP<2:0> | | IC1IS• | <1:0> | _ | _ | _ | | T1IP<2:0> | | T1IS- | <1:0> | 0000 | | | | 31:16 | - | _ | _ | | INT2IP<2:0> | | INT2IS | <1:0> | - | _ | - | С | C2IP<2:0> | | OC2IS | S<1:0> | 0000 | | 10B0 | IPC2 | 15:0 | _ | _ | _ | | IC2IP<2:0> | | IC2IS• | <1:0> | _ | _ | _ | | T2IP<2:0> | | T2IS- | <1:0> | 0000 | | 1000 | IDOS | 31:16 | _ | _ | _ | | INT3IP<2:0> | | INT3IS | <1:0> | _ | _ | _ | C | C3IP<2:0> | | OC3IS | S<1:0> | 0000 | | 10C0 | IPC3 | 15:0 | _ | _ | _ | | IC3IP<2:0> | | IC3IS | <1:0> | | _ | _ | | T3IP<2:0> | | T3IS- | <1:0> | 0000 | | 4000 | IPC4 | 31:16 | _ | _ | _ | | INT4IP<2:0> | | INT4IS | <1:0> | | _ | _ | С | C4IP<2:0> | | OC4IS | S<1:0> | 0000 | | 10D0 | IPC4 | 15:0 | _ | _ | _ | IC4IP<2:0> | | | IC4IS• | <1:0> | | _ | _ | T4IP<2:0> | | T4IS | <1:0> | 0000 | | | 10E0 | IPC5 | 31:16 | _ | _ | _ | AD1IP<2:0> | | | AD1IS | <1:0> | _ | _ | _ | C | C5IP<2:0> | | OC5IS | S<1:0> | 0000 | | 10E0 | IPC5 | 15:0 | - | | _ | IC5IP<2:0> | | | IC5IS• | <1:0> | 1 | _ | 1 | - | T5IP<2:0> | | T5IS- | <1:0> | 0000 | | 10F0 | IPC6 | 31:16 | _ | _ | _ | CMP1IP<2:0> | | | CMP1IS | S<1:0> | _ | _ | _ | F | CEIP<2:0> | | FCEIS | S<1:0> | 0000 | | 1050 | IFCO | 15:0 | _ | _ | _ | F | RTCCIP<2:0> | • | RTCCIS | S<1:0> | - | _ | _ | FS | SCMIP<2:0 | > | FSCMI | S<1:0> | 0000 | PIC32MX1XX/2XX 28/36/44-PIN FAMILY **Legend:** x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. ^{2:} These bits are not available on PIC32MX1XX devices. ^{3:} This register does not have associated CLR, SET, INV registers. #### REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24:24 | R/W-0 | 31:24 | IFS31 | IFS30 | IFS29 | IFS28 | IFS27 | IFS26 | IFS25 | IFS24 | | 23:16 | R/W-0 | 23.10 | IFS23 | IFS22 | IFS21 | IFS20 | IFS19 | IFS18 | IFS17 | IFS16 | | 15.0 | R/W-0 | 15:8 | IFS15 | IFS14 | IFS13 | IFS12 | IFS11 | IFS10 | IFS09 | IFS08 | | 7:0 | R/W-0 | 7.0 | IFS07 | IFS06 | IFS05 | IFS04 | IFS03 | IFS02 | IFS01 | IFS00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IFS31-IFS00: Interrupt Flag Status bits 1 = Interrupt request has occurred 0 = No interrupt request has occurred Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions. ### REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | R/W-0 | 31:24 | IEC31 | IEC30 | IEC29 | IEC28 | IEC27 | IEC26 | IEC25 | IEC24 | | 23:16 | R/W-0 | 23.10 | IEC23 | IEC22 | IEC21 | IEC20 | IEC19 | IEC18 | IEC17 | IEC16 | | 15:8 | R/W-0 | 15.6 | IEC15 | IEC14 | IEC13 | IEC12 | IEC11 | IEC10 | IEC09 | IEC08 | | 7:0 | R/W-0 | 7.0 | IEC07 | IEC06 | IEC05 | IEC04 | IEC03 | IEC02 | IEC01 | IEC00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IEC31-IEC00: Interrupt Enable bits 1 = Interrupt is enabled0 = Interrupt is disabled **Note:** This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions. #### REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | - | - | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | U-0 | 13.6 | _ | - | - | _ | _ | _ | _ | _ | | 7:0 | R-0 | U-0 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | 7.0 | UACTPND | - | 1 | USLPGRD | USBBUSY ⁽¹⁾ | - | USUSPEND | USBPWR | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7 **UACTPND:** USB Activity Pending bit 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated 0 = An interrupt is not pending bit 6-5 **Unimplemented:** Read as '0' bit 4 USLPGRD: USB Sleep Entry Guard bit 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending 0 = USB module does not block Sleep entry bit 3 **USBBUSY:** USB Module Busy bit⁽¹⁾ 1 = USB module is active or disabled, but not ready to be enabled 0 = USB module is not active and is ready to be enabled bit 2 Unimplemented: Read as '0' bit 1 USUSPEND: USB Suspend Mode bit 1 = USB module is placed in Suspend mode (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.) 0 = USB module operates normally bit 0 USBPWR: USB Operation Enable bit 1 = USB module is turned on 0 = USB module is disabled (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.) **Note 1:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results. ### REGISTER 17-3: SPIXSTAT: SPI STATUS REGISTER bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full #### Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. #### Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full 0 = Receive buffer, SPIxRXB is not full #### Standard Buffer Mode: Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. #### Enhanced Buffer Mode: Set when SWPTR + 1 = CRPTR; cleared otherwise FIGURE 18-1: I²C BLOCK DIAGRAM ### REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED) - bit 4 **Unimplemented:** Read as '0' bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾ - 1 = Active-high (PMCS1) 0 = Active-low (PMCS1) - bit 2 Unimplemented: Read as '0' - bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10): - 1 = Write strobe active-high (PMWR) - $0 = Write strobe active-low (\overline{PMWR})$ For Master mode 1 (MODE<1:0> = 11): - 1 = Enable strobe active-high (PMENB) - 0 = Enable strobe active-low (PMENB) - bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10): - 1 = Read Strobe active-high (PMRD) - $0 = \text{Read Strobe active-low } (\overline{PMRD})$ For Master mode 1 (MODE<1:0> = 11): - 1 = Read/write strobe active-high (PMRD/PMWR) - 0 = Read/write strobe active-low (PMRD/PMWR) **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit. 2: These bits have no effect when their corresponding pins are used as address lines. ### REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | |--------------|-------------------|---|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--| | 04.04 | U-0 | | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | | 00.40 | U-0 | | 23:16 | | | _ | _ | _ | _ | _ | _ | | | | U-0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | | 15:8 | _ | CS1 ⁽¹⁾
ADDR14 ⁽²⁾ | _ | _ | _ | | ADDR<10:8> | | | | 7:0 | R/W-0 | | | ADDR<7:0> | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-15 Unimplemented: Read as '0' bit 14 **CS1**: Chip Select 1 bit⁽¹⁾ 1 = Chip Select 1 is active 0 = Chip Select 1 is inactive bit 14 ADDR<14>: Destination Address bit 14⁽²⁾ bit 13-11 Unimplemented: Read as '0' bit 10-0 ADDR<10:0>: Destination Address bits **Note 1:** When the CSF<1:0> bits (PMCON<7:6>) = 10. **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01. ### 21.1 RTCC Control Registers ### TABLE 21-1: RTCC REGISTER MAP | IAD |-----------------------------|---------------------------------|-----------|--------|-------|----------|----------|------------|----------|--------|------|----------|----------|-----------|---------|---------|------------|------------|-------|------------| | ess | | • | | | | | | | | | Bits | | | | | | | | | | Virtual Address
(BF80_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 0200 | RTCCON | 31:16 | _ | _ | _ | _ | _ | CAL<9:0> | | | | | | | 0000 | | | | | | 0200 | KICCON | 15:0 | ON | _ | SIDL | _ | | 1 | _ | _ | RTSECSEL | RTCCLKON | _ | _ | RTCWREN | RTCSYNC | HALFSEC | RTCOE | 0000 | | 0210 | RTCALRM | 31:16 | _ | | _ | _ | _ | _ | | | _ | _ | | _ | _ | _ | _ | | 0000 | | 0210 | TOTALITA | 15:0 | ALRMEN | CHIME | PIV | ALRMSYNC | | AMASI | <<3:0> | | | | | ARPT | <7:0> | | | | 0000 | | 0220 | RTCTIME | 31:16 | _ | _ | HR1 | 0<1:0> | | HR01 | <3:0> | | _ | М | IN10<2:0> | > | | MIN01 | <3:0> | | xxxx | | 0220 | KTOTIVIL | 15:0 | _ | | SEC10<2: | 0> | | SEC01 | <3:0> | | _ | _ | _ | _ | _ | _ | _ | _ | xx00 | | 0330 | RTCDATE | 31:16 | | YEAR | 10<3:0> | | | YEAR0 | 1<3:0> | | _ | _ | _ | MONTH10 | | MONTH | 01<3:0> | | xxxx | | 0230 | RICDAIL | 15:0 | _ | _ | DAY | 10<1:0> | | DAY01 | <3:0> | | _ | _ | _ | _ | _ | W | /DAY01<2:0 |)> | xx00 | | 0240 | ALRMTIME | 31:16 | _ | _ | HR1 | 0<1:0> | | HR01 | <3:0> | | _ | М | IN10<2:0> | > | | MIN01 | <3:0> | | xxxx | | 0240 | ALINIVITIVIL | 15:0 | _ | | SEC10<2: | 0> | | SEC01 | <3:0> | | - | _ | _ | _ | _ | _ | _ | _ | xx00 | | 0250 | AL DMDATE | 31:16 | _ | _ | _ | _ | | 1 | _ | _ | | _ | _ | MONTH10 | | MONTH | 01<3:0> | | 00xx | | 0230 | 50 ALRMDATE | 15:0 | • | DAY1 | 10<3:0> | | DAY01<3:0> | | | _ | _ | | _ | _ | W | /DAY01<2:0 |)> | xx0x | | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information PIC32MX1XX/2XX 28/36/44-PIN FAMILY #### REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3 | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | |--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--| | 24.24 | U-0 | | | | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | | | | 00:40 | U-0 | | | | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | | | | 45.0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | | | | 15:8 ADRC — SAMC<4:0>(1) | | | | | | | | | | | | | 7.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W | R/W-0 | | | | | 7:0 | ADCS<7:0>(2) | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 ADRC: ADC Conversion Clock Source bit 1 = Clock derived from FRC 0 = Clock derived from Peripheral Bus Clock (PBCLK) bit 14-13 Unimplemented: Read as '0' bit 12-8 **SAMC<4:0>:** Auto-Sample Time bits⁽¹⁾ 11111 = **31** TAD 00001 = 1 TAD 00000 = 0 TAD (Not allowed) ADCS<7:0>: ADC Conversion Clock Select bits(2) bit 7-0 11111111 = TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111. 2: This bit is not used if the ADRC (AD1CON3<15>) bit = 1. ### 29.0 DEVELOPMENT SUPPORT The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools: - · Integrated Development Environment - MPLAB® X IDE Software - · Compilers/Assemblers/Linkers - MPLAB XC Compiler - MPASMTM Assembler - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families - Simulators - MPLAB X SIM Software Simulator - Emulators - MPLAB REAL ICE™ In-Circuit Emulator - · In-Circuit Debuggers/Programmers - MPLAB ICD 3 - PICkit™ 3 - · Device Programmers - MPLAB PM3 Device Programmer - Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits - · Third-party development tools ## 29.1 MPLAB X Integrated Development Environment Software The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users #### Feature-Rich Editor: - · Color syntax highlighting - Smart code completion makes suggestions and provides hints as you type - Automatic code formatting based on user-defined rules - · Live parsing User-Friendly, Customizable Interface: - Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. - Call graph window Project-Based Workspaces: - · Multiple projects - · Multiple tools - · Multiple configurations - · Simultaneous debugging sessions File History and Bug Tracking: - · Local file history feature - · Built-in support for Bugzilla issue tracker ### 30.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. ### **Absolute Maximum Ratings** #### (See Note 1) | Ambient temperature under bias | 40°C to +105°C | |---|--------------------------| | Storage temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | 0.3V to +4.0V | | Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3) | 0.3V to (VDD + 0.3V) | | Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3) | 0.3V to +5.5V | | Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3) | 0.3V to +3.6V | | Voltage on D+ or D- pin with respect to Vusb3v3 | 0.3V to (VUSB3V3 + 0.3V) | | Voltage on VBUS with respect to VSS | 0.3V to +5.5V | | Maximum current out of Vss pin(s) | 300 mA | | Maximum current into VDD pin(s) (Note 2) | 300 mA | | Maximum output current sunk by any I/O pin | 15 mA | | Maximum output current sourced by any I/O pin | 15 mA | | Maximum current sunk by all ports | 200 mA | | Maximum current sourced by all ports (Note 2) | 200 mA | - Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2). - 3: See the "Pin Diagrams" section for the 5V tolerant pins. ### **TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS** AC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Typical | Max. | Units | Conditions | |---------------|--------|---|-------|---------|-------|-------|-----------------------------------| | OS50 | FPLLI | PLL Voltage Controlled
Oscillator (VCO) Input
Frequency Range | 3.92 | _ | 5 | MHz | ECPLL, HSPLL, XTPLL, FRCPLL modes | | OS51 | Fsys | On-Chip VCO System Frequency | 60 | _ | 120 | MHz | _ | | OS52 | TLOCK | PLL Start-up Time (Lock Time) | _ | _ | 2 | ms | _ | | OS53 | DCLK | CLKO Stability ⁽²⁾
(Period Jitter or Cumulative) | -0.25 | _ | +0.25 | % | Measured over 100 ms period | - Note 1: These parameters are characterized, but not tested in manufacturing. - **2:** This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula: $$Effective Jitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$ For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows: $$Effective Jitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$ ### **TABLE 30-19: INTERNAL FRC ACCURACY** | AC CHARACTERISTICS | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | |---|-----------------|--|---------|------|-------|------------|--|--| | Param.
No. | Characteristics | Min. | Typical | Max. | Units | Conditions | | | | Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾ | | | | | | | | | | F20b | FRC | -0.9 | _ | +0.9 | % | _ | | | **Note 1:** Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift. ### **TABLE 30-20: INTERNAL LPRC ACCURACY** | AC CHARACTERISTICS | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | |---------------------------------|-----------------|--|---------|------|-------|------------|--|--| | Param.
No. | Characteristics | Min. | Typical | Max. | Units | Conditions | | | | LPRC @ 31.25 kHz ⁽¹⁾ | | | | | | | | | | F21 | LPRC | -15 | _ | +15 | % | _ | | | Note 1: Change of LPRC frequency as VDD changes. TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +105^{\circ}\text{C}$ for V-temp | | | | | | |--------------------|---------|--|--|-------|------|-------|------------|--| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Тур. | Max. | Units | Conditions | | | PM1 | TLAT | PMALL/PMALH Pulse Width | _ | 1 Трв | | _ | _ | | | PM2 | TADSU | Address Out Valid to
PMALL/PMALH Invalid (address
setup time) | _ | 2 Трв | | _ | _ | | | РМ3 | TADHOLD | PMALL/PMALH Invalid to
Address Out Invalid (address
hold time) | _ | 1 Трв | _ | _ | _ | | | PM4 | TAHOLD | PMRD Inactive to Address Out
Invalid
(address hold time) | 5 | _ | _ | ns | _ | | | PM5 | TRD | PMRD Pulse Width | _ | 1 Трв | | _ | _ | | | PM6 | TDSU | PMRD or PMENB Active to Data In Valid (data setup time) | 15 | _ | _ | ns | _ | | | PM7 | TDHOLD | PMRD or PMENB Inactive to Data In Invalid (data hold time) | _ | 80 | _ | ns | _ | | **Note 1:** These parameters are characterized, but not tested in manufacturing. FIGURE 30-22: PARALLEL MASTER PORT WRITE TIMING DIAGRAM ### 32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS **Note:** The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. FIGURE 32-1: I/O OUTPUT VOLTAGE HIGH (VOH) 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC] **lote:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging ### RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |--------------------------|-------------|------|----------|------| | Dimension | MIN | NOM | MAX | | | Contact Pitch | | | 1.27 BSC | | | Contact Pad Spacing | C | | 9.40 | | | Contact Pad Width (X28) | Х | | | 0.60 | | Contact Pad Length (X28) | Υ | | | 2.00 | | Distance Between Pads | Gx | 0.67 | | | | Distance Between Pads | G | 7.40 | | · | ### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2052A # 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-157C Sheet 1 of 2 ### THE MICROCHIP WEB SITE Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # CUSTOMER CHANGE NOTIFICATION SERVICE Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions. #### CUSTOMER SUPPORT Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - · Field Application Engineer (FAE) - · Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://microchip.com/support