



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                      |
| Core Size                  | 32-Bit Single-Core                                                                |
| Speed                      | 50MHz                                                                             |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                      |
| Number of I/O              | 21                                                                                |
| Program Memory Size        | 256КВ (256К х 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 64K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                       |
| Data Converters            | A/D 10x10b                                                                        |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                                    |
| Supplier Device Package    | 28-SOIC                                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f256bt-50i-so |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

|          |                   | Pin Nu                            | mber <sup>(1)</sup> |                                 |             |                |                                                                                                 |
|----------|-------------------|-----------------------------------|---------------------|---------------------------------|-------------|----------------|-------------------------------------------------------------------------------------------------|
| Pin Name | 28-pin<br>QFN     | 28-pin<br>SSOP/<br>SPDIP/<br>SOIC | 36-pin<br>VTLA      | 44-pin<br>QFN/<br>TQFP/<br>VTLA | Pin<br>Type | Buffer<br>Type | Description                                                                                     |
| PMA0     | 7                 | 10                                | 8                   | 3                               | I/O         | TTL/ST         | Parallel Master Port Address bit 0 input<br>(Buffered Slave modes) and output<br>(Master modes) |
| PMA1     | 9                 | 12                                | 10                  | 2                               | I/O         | TTL/ST         | Parallel Master Port Address bit 1 input<br>(Buffered Slave modes) and output<br>(Master modes) |
| PMA2     |                   | _                                 | _                   | 27                              | 0           | _              | Parallel Master Port address                                                                    |
| PMA3     |                   |                                   |                     | 38                              | 0           | —              | (Demultiplexed Master modes)                                                                    |
| PMA4     |                   |                                   |                     | 37                              | 0           | —              |                                                                                                 |
| PMA5     |                   | _                                 | _                   | 4                               | 0           | _              |                                                                                                 |
| PMA6     |                   | _                                 | _                   | 5                               | 0           | _              |                                                                                                 |
| PMA7     |                   |                                   |                     | 13                              | 0           | —              |                                                                                                 |
| PMA8     |                   | _                                 | _                   | 32                              | 0           | _              |                                                                                                 |
| PMA9     |                   | _                                 | _                   | 35                              | 0           | _              |                                                                                                 |
| PMA10    |                   | _                                 | _                   | 12                              | 0           | _              |                                                                                                 |
| PMCS1    | 23                | 26                                | 29                  | 15                              | 0           | _              | Parallel Master Port Chip Select 1 strobe                                                       |
|          | 20 <sup>(2)</sup> | 23 <sup>(2)</sup>                 | 26 <sup>(2)</sup>   | 10 <sup>(2)</sup>               | 1/0         | TTI /CT        | Parallel Master Port data (Demultiplexed                                                        |
|          | 1 <sup>(3)</sup>  | 4 <sup>(3)</sup>                  | 35 <sup>(3)</sup>   | 21 <sup>(3)</sup>               | 1/0         | 111/31         | Master mode) or address/data                                                                    |
|          | 19 <b>(2)</b>     | 22 <sup>(2)</sup>                 | 25 <sup>(2)</sup>   | 9(2)                            | 1/0         | TTI /CT        | (Multiplexed Master modes)                                                                      |
|          | 2 <sup>(3)</sup>  | 5 <sup>(3)</sup>                  | 36 <sup>(3)</sup>   | 22 <sup>(3)</sup>               | 1/0         | 111/31         |                                                                                                 |
|          | 18 <sup>(2)</sup> | 21 <sup>(2)</sup>                 | 24 <sup>(2)</sup>   | 8 <sup>(2)</sup>                | 1/0         | TTI /ST        |                                                                                                 |
|          | 3(3)              | 6 <sup>(3)</sup>                  | 1 <sup>(3)</sup>    | 23 <sup>(3)</sup>               | 1/0         | 116/01         |                                                                                                 |
| PMD3     | 15                | 18                                | 19                  | 1                               | I/O         | TTL/ST         |                                                                                                 |
| PMD4     | 14                | 17                                | 18                  | 44                              | I/O         | TTL/ST         |                                                                                                 |
| PMD5     | 13                | 16                                | 17                  | 43                              | I/O         | TTL/ST         |                                                                                                 |
| PMD6     | 12 <sup>(2)</sup> | 15 <sup>(2)</sup>                 | 16 <sup>(2)</sup>   | 42 <sup>(2)</sup>               | 1/0         | TTI /CT        | 1                                                                                               |
|          | 28 <sup>(3)</sup> | 3( <b>3</b> )                     | 34 <b>(3)</b>       | 20 <sup>(3)</sup>               | 1/0         | 111/31         |                                                                                                 |
| PMD7     | 11(2)             | 14 <sup>(2)</sup>                 | 15 <b>(2)</b>       | 41 <sup>(2)</sup>               | 1/0         | TTI /ST        |                                                                                                 |
|          | 27 <sup>(3)</sup> | 2 <sup>(3)</sup>                  | 33 <b>(3)</b>       | 19 <sup>(3)</sup>               | 1/0         | 112/01         |                                                                                                 |
| PMRD     | 21                | 24                                | 27                  | 11                              | 0           | —              | Parallel Master Port read strobe                                                                |
|          | 22 <sup>(2)</sup> | 25 <sup>(2)</sup>                 | 28 <sup>(2)</sup>   | 14 <sup>(2)</sup>               | 0           |                | Parallel Master Port write strope                                                               |
|          | 4 <sup>(3)</sup>  | 7 <sup>(3)</sup>                  | 2 <sup>(3)</sup>    | 24 <sup>(3)</sup>               | Ŭ           |                | T arallel master Fort while strobe                                                              |
| VBUS     | 12 <sup>(3)</sup> | 15 <sup>(3)</sup>                 | 16 <b>(3)</b>       | 42 <sup>(3)</sup>               | Ι           | Analog         | USB bus power monitor                                                                           |
| VUSB3V3  | 20 <sup>(3)</sup> | 23 <sup>(3)</sup>                 | 26 <sup>(3)</sup>   | 10 <sup>(3)</sup>               | Р           | _              | USB internal transceiver supply. This pin must be connected to VDD.                             |
| VBUSON   | 22 <sup>(3)</sup> | 25 <sup>(3)</sup>                 | 28 <sup>(3)</sup>   | 14 <sup>(3)</sup>               | 0           |                | USB Host and OTG bus power control<br>output                                                    |
| D+       | 18 <sup>(3)</sup> | 21 <sup>(3)</sup>                 | 24 <sup>(3)</sup>   | 8 <sup>(3)</sup>                | I/O         | Analog         | USB D+                                                                                          |
| D-       | 19 <sup>(3)</sup> | 22 <sup>(3)</sup>                 | 25 <sup>(3)</sup>   | 9(3)                            | I/O         | Analog         | USB D-                                                                                          |
| Legend:  | CMOS = C          | MOS compa                         | atible input        | or output                       |             | Analog =       | Analog input P = Power                                                                          |
|          | ST = Schmi        | tt Trigger in                     | put with CN         | NOS levels                      |             | O = Outp       | but I=Input                                                                                     |
|          | L  =   L          | nput buffer                       |                     |                                 |             | PPS = P        | eripheral Pin Select — = N/A                                                                    |

#### 

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

| Exception | Description                                                                                                                             |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Reset     | Assertion MCLR or a Power-on Reset (POR).                                                                                               |  |  |  |  |  |  |
| DSS       | EJTAG debug single step.                                                                                                                |  |  |  |  |  |  |
| DINT      | EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register. |  |  |  |  |  |  |
| NMI       | Assertion of NMI signal.                                                                                                                |  |  |  |  |  |  |
| Interrupt | Assertion of unmasked hardware or software interrupt signal.                                                                            |  |  |  |  |  |  |
| DIB       | EJTAG debug hardware instruction break matched.                                                                                         |  |  |  |  |  |  |
| AdEL      | Fetch address alignment error.<br>Fetch reference to protected address.                                                                 |  |  |  |  |  |  |
| IBE       | Instruction fetch bus error.                                                                                                            |  |  |  |  |  |  |
| DBp       | EJTAG breakpoint (execution of SDBBP instruction).                                                                                      |  |  |  |  |  |  |
| Sys       | Execution of SYSCALL instruction.                                                                                                       |  |  |  |  |  |  |
| Вр        | Execution of BREAK instruction.                                                                                                         |  |  |  |  |  |  |
| RI        | Execution of a reserved instruction.                                                                                                    |  |  |  |  |  |  |
| CpU       | Execution of a coprocessor instruction for a coprocessor that is not enabled.                                                           |  |  |  |  |  |  |
| CEU       | Execution of a CorExtend instruction when CorExtend is not enabled.                                                                     |  |  |  |  |  |  |
| Ov        | Execution of an arithmetic instruction that overflowed.                                                                                 |  |  |  |  |  |  |
| Tr        | Execution of a trap (when trap condition is true).                                                                                      |  |  |  |  |  |  |
| DDBL/DDBS | EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).                                           |  |  |  |  |  |  |
| AdEL      | Load address alignment error.<br>Load reference to protected address.                                                                   |  |  |  |  |  |  |
| AdES      | Store address alignment error.<br>Store to protected address.                                                                           |  |  |  |  |  |  |
| DBE       | Load or store bus error.                                                                                                                |  |  |  |  |  |  |
| DDBL      | EJTAG data hardware breakpoint matched in load data compare.                                                                            |  |  |  |  |  |  |

# TABLE 3-3: MIPS32<sup>®</sup> M4K<sup>®</sup> PROCESSOR CORE EXCEPTION TYPES

# 3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

## 3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

# 3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 31:24        | _                 | —                 | _                 | —                 | _                 | —                 | —                | —                |  |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 23:10        | —                 | —                 | _                 | —                 | _                 | —                 | —                | —                |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R-0              | R-0              |  |
| 15:8         | BMXDUDBA<15:8>    |                   |                   |                   |                   |                   |                  |                  |  |
|              | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |  |
| 7:0          |                   |                   |                   | BMXDU             | DBA<7:0>          |                   |                  |                  |  |

# REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

# Legend:

| Legena:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

### bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

## bit 9-0 BMXDUDBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

**Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

NOTES:

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5    | Bit<br>28/20/12/4     | Bit<br>27/19/11/3      | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|----------------------|-----------------------|------------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0                  | U-0                   | U-0                    | U-0               | U-0              | U-0              |
| 31.24        | —                 | —                 | _                    | —                     | _                      |                   | _                | —                |
| 00.40        | U-0               | U-0               | U-0                  | U-0                   | U-0                    | U-0               | U-0              | U-0              |
| 23:10        | —                 | —                 | —                    | —                     | —                      | —                 | —                | —                |
| 45.0         | R/W-0             | R/W-0             | R-0                  | R-0                   | R-0                    | U-0               | U-0              | U-0              |
| 15:8         | WR                | WREN              | WRERR <sup>(1)</sup> | LVDERR <sup>(1)</sup> | LVDSTAT <sup>(1)</sup> | —                 | _                | —                |
| 7:0          | U-0               | U-0               | U-0                  | U-0                   | R/W-0                  | R/W-0             | R/W-0            | R/W-0            |
|              | _                 | _                 |                      |                       | NVMOP<3:0>             |                   |                  |                  |

#### REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

# Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | id as '0'          |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

| bit 15   | WR: Write Control bit                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | This bit is writable when WREN = 1 and the unlock sequence is followed.                                                                                                                                                                                                                                                           |
|          | <ul> <li>1 = Initiate a Flash operation. Hardware clears this bit when the operation completes</li> <li>0 = Flash operation is complete or inactive</li> </ul>                                                                                                                                                                    |
| bit 14   | WREN: Write Enable bit                                                                                                                                                                                                                                                                                                            |
|          | This is the only bit in this register reset by a device Reset.                                                                                                                                                                                                                                                                    |
|          | <ul> <li>1 = Enable writes to WR bit and enables LVD circuit</li> <li>0 = Disable writes to WR bit and disables LVD circuit</li> </ul>                                                                                                                                                                                            |
| bit 13   | WRERR: Write Error bit <sup>(1)</sup>                                                                                                                                                                                                                                                                                             |
|          | This bit is read-only and is automatically set by hardware.                                                                                                                                                                                                                                                                       |
|          | <ul> <li>1 = Program or erase sequence did not complete successfully</li> <li>0 = Program or erase sequence completed normally</li> </ul>                                                                                                                                                                                         |
| bit 12   | LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) <sup>(1)</sup>                                                                                                                                                                                                                                                 |
|          | This bit is read-only and is automatically set by hardware.                                                                                                                                                                                                                                                                       |
|          | <ul> <li>1 = Low-voltage detected (possible data corruption, if WRERR is set)</li> <li>0 = Voltage level is acceptable for programming</li> </ul>                                                                                                                                                                                 |
| bit 11   | LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) <sup>(1)</sup>                                                                                                                                                                                                                                               |
|          | This bit is read-only and is automatically set and cleared by the hardware.                                                                                                                                                                                                                                                       |
|          | 1 = Low-voltage event is active                                                                                                                                                                                                                                                                                                   |
|          | 0 = Low-voltage event is not active                                                                                                                                                                                                                                                                                               |
| bit 10-4 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                        |
| bit 3-0  | NVMOP<3:0>: NVM Operation bits                                                                                                                                                                                                                                                                                                    |
|          | These bits are writable when WREN = 0.                                                                                                                                                                                                                                                                                            |
|          | 1111 = Reserved                                                                                                                                                                                                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                   |
|          | •                                                                                                                                                                                                                                                                                                                                 |
|          | 0111 = Reserved                                                                                                                                                                                                                                                                                                                   |
|          | 0110 = No operation                                                                                                                                                                                                                                                                                                               |
|          | <ul> <li>0101 = Program Flash Memory (PFM) erase operation: erases PFM, if all pages are not write-protected</li> <li>0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected</li> <li>0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected</li> </ul> |
|          | 0010 = No operation                                                                                                                                                                                                                                                                                                               |
|          | 0000 = No operation                                                                                                                                                                                                                                                                                                               |

**Note 1:** This bit is cleared by setting NVMOP == `b0000, and initiating a Flash operation (i.e., WR).

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|
| 21.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 31.24        |                   |                   |                   | NVMDA             | TA<31:24>         |                   |                  |                  |  |  |
| 00.10        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 23:10        | NVMDATA<23:16>    |                   |                   |                   |                   |                   |                  |                  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 15:8         | NVMDATA<15:8>     |                   |                   |                   |                   |                   |                  |                  |  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |
| 7.0          |                   | NVMDATA<7:0>      |                   |                   |                   |                   |                  |                  |  |  |

#### REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

#### Legend:

| Legenu.           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

# REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 24.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 31:24        | NVMSRCADDR<31:24> |                   |                   |                   |                   |                   |                  |                  |  |
| 22:16        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 23:10        | NVMSRCADDR<23:16> |                   |                   |                   |                   |                   |                  |                  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 15:8         | NVMSRCADDR<15:8>  |                   |                   |                   |                   |                   |                  |                  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
| 7:0          | NVMSRCADDR<7:0>   |                   |                   |                   |                   |                   |                  |                  |  |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

### bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 | —                 | -                 | —                 | —                 |                   | —                | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | _                 | —                 | —                 | —                 | —                | —                |
| 45.0         | U-0               | U-0               | U-0               | R/W-0             | U-0               | R/W-0             | R/W-0            | R/W-0            |
| 15:8         | —                 | —                 | -                 | MVEC              | —                 |                   | TPC<2:0>         |                  |
| 7:0          | U-0               | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | _                 | _                 |                   | INT4EP            | INT3EP            | INT2EP            | INT1EP           | INT0EP           |

## REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

# Legend:

| Logonan           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

#### bit 15-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
  - 1 = Interrupt controller configured for Multi-vectored mode
  - 0 = Interrupt controller configured for Single-vectored mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
  - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
  - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
  - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
  - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
  - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
  - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
  - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
  - 000 = Disables Interrupt Proximity timer

#### bit 7-5 Unimplemented: Read as '0'

- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
  - 1 = Rising edge
  - 0 = Falling edge

# TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

| SS                        |                  |           | Bits  |       |       |       |       |       |      |      |      |      |      |      |            |            |        |      |            |
|---------------------------|------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------------|------------|--------|------|------------|
| Virtual Addre<br>(BF80_#) | Register<br>Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3       | 18/2       | 17/1   | 16/0 | All Resets |
| 5404                      |                  | 31:16     | -     | —     | -     | -     | -     | —     | —    | —    | -    | —    | —    | —    | —          | —          | -      | —    | 0000       |
| FA04                      | INTIR            | 15:0      | _     | _     | _     | —     | _     | _     | _    | —    | _    | _    | _    | _    |            | INT1F      | R<3:0> |      | 0000       |
| EVUS                      |                  | 31:16     |       | —     | _     | —     | _     | _     | _    | _    |      | —    | _    | _    | _          | _          | —      |      | 0000       |
| FAUO                      | INTZR            | 15:0      | _     | —     | —     | —     | —     | —     | —    | —    | _    | —    | —    | _    |            | INT2F      | R<3:0> |      | 0000       |
| EAOC                      |                  | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          | —          | —      | —    | 0000       |
| TAUC                      | INTOK            | 15:0      | _     | _     |       |       |       | _     | —    |      | _    | _    | _    | _    |            | INT3R<3:0> |        |      |            |
| EA10                      |                  | 31:16     | _     | _     |       |       |       | _     | —    |      | _    | _    | _    | _    | _          | —          | —      | _    | 0000       |
| 1710                      |                  | 15:0      | _     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | INT4F      | R<3:0> |      | 0000       |
| FA18                      | T2CKR            | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 17(10                     | 120101           | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | T2CK       | R<3:0> |      | 0000       |
| FA1C                      | T3CKR            | 31:16     | _     | —     | —     | —     | —     | —     | —    | —    | -    | —    | —    | —    | —          |            | —      | —    | 0000       |
| TAIC                      | TOORIC           | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | T3CK       | R<3:0> |      | 0000       |
| EA20                      | TACKR            | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 1720                      | 140111           | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | T4CK       | R<3:0> |      | 0000       |
| EA24                      |                  | 31:16     | _     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          | —          | —      | —    | 0000       |
| 1724                      | TOORIC           | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | T5CK       | R<3:0> |      | 0000       |
| FA28                      |                  | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 1 A20                     | ICIK             | 15:0      | _     | _     | —     |       |       | _     | _    |      | _    | _    | _    |      |            | IC1R       | <3:0>  |      | 0000       |
| FA2C                      | IC2P             | 31:16     | _     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          | —          | —      | —    | 0000       |
| 1720                      | 10211            | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | IC2R       | <3:0>  |      | 0000       |
| EA30                      | IC3P             | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 1,730                     | 10011            | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | IC3R       | <3:0>  |      | 0000       |
| EA34                      |                  | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 17.04                     |                  | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | IC4R       | <3:0>  |      | 0000       |
| EA38                      | IC5R             | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 1,730                     | 1001             | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | IC5R       | <3:0>  |      | 0000       |
| E448                      | OCEAR            | 31:16     | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    | —          |            | —      | —    | 0000       |
| 1740                      |                  | 15:0      | —     | —     | —     | —     | —     | —     | —    | —    | —    | —    | —    | —    |            | OCFA       | R<3:0> |      | 0000       |
| FAAC                      | OCEBR            | 31:16     | _     | —     | —     | _     | _     | —     | —    | _    | _    | —    | —    | —    | —          | —          | —      | —    | 0000       |
| 1740                      |                  | 15:0      | _     | —     | —     | —     | —     | —     | —    | —    | _    | —    | —    | —    | OCFBR<3:0> |            |        | 0000 |            |
| EA 50                     |                  | 31:16     | _     | —     | -     | —     | -     | _     | —    | —    | _    | —    | —    | —    | —          | —          | -      | —    | 0000       |
| FA5U                      | UIKAR            | 15:0      | _     | _     | -     | -     |       | _     | _    | _    | _    | _    | _    | —    |            | U1RX       | R<3:0> |      | 0000       |

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

#### 15.1 **Input Capture Control Registers**

| AB                       | BLE 15-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP |               |       |       |       |       |       |       |       |        |        |      |      |      |       |      |         |
|--------------------------|--------------------------------------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|------|------|------|-------|------|---------|
| ess                      |                                                        | â             |       |       |       |       |       |       |       | Bi     | ts     |      |      |      |       |      |         |
| Virtual Addr<br>(BF80_#) | Register<br>Name                                       | Bit Range     | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9  | 24/8   | 23/7   | 22/6 | 21/5 | 20/4 | 19/3  | 18/2 | 17/1    |
| 2000                     |                                                        | 31:16         |       |       |       | —     | —     | _     | —     |        |        |      |      |      | —     | —    | —       |
| 2000                     | IC ICON.                                               | 15:0          | ON    |       | SIDL  | _     | —     | _     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0 |
| 2010                     | IC1BUF                                                 | 31:16<br>15:0 |       |       |       |       |       |       |       | IC1BUF | <31:0> |      |      |      |       |      |         |
| 2200                     |                                                        | 31:16         | _     | _     | _     | —     | —     | _     | —     | —      | _      | _    | -    | _    | —     | —    | _       |
| 2200                     | 1020011                                                | 15:0          | ON    |       | SIDL  | —     | —     | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0 |
| 2210                     | IC2BUF                                                 | 31:16<br>15:0 |       |       |       |       |       |       |       | IC2BUF | <31:0> |      |      |      |       |      |         |
| 2400                     |                                                        | 31:16         | —     | —     | _     | _     | —     | —     | _     | —      | _      | —    | _    | —    | _     | —    | _       |
| 2400                     | IC3CON /                                               | 15:0          | ON    | _     | SIDL  | —     | —     | _     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0 |
| 2410                     | IC3BUF                                                 | 31:16<br>15:0 |       |       |       |       |       |       |       | IC3BUF | <31:0> |      |      |      |       |      |         |
| 2600                     |                                                        | 31:16         | _     |       | _     | -     | -     | -     | —     | —      | _      |      |      |      | —     | —    | _       |
| 2000                     | 1040011                                                | 15:0          | ON    | —     | SIDL  | —     | —     | —     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0 |
| 2610                     | IC4BUF                                                 | 31:16<br>15:0 |       |       |       |       |       |       |       | IC4BUF | <31:0> |      |      |      |       |      |         |
| 2800                     |                                                        | 31:16         | _     |       | _     | -     | -     |       | —     | —      | _      |      |      |      | —     | —    | —       |
| 2000                     | 1000010                                                | 15:0          | ON    | _     | SIDL  | —     | _     | _     | FEDGE | C32    | ICTMR  | ICI< | 1:0> | ICOV | ICBNE |      | ICM<2:0 |
| 2810                     | IC5BUF                                                 | 31:16<br>15:0 |       |       |       |       |       |       |       | IC5BUF | <31:0> |      |      |      |       |      |         |

#### T

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

All Resets

0000

0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx

16/0

—

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24     | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 00.40     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10     | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 45.0      | R/W-0             | U-0               | R/W-0             | U-0               | U-0               | U-0               | R/W-0            | R/W-0            |
| 15:8      | ON <sup>(1)</sup> | —                 | SIDL              | —                 | —                 | —                 | FEDGE            | C32              |
| 7.0       | R/W-0             | R/W-0             | R/W-0             | R-0               | R-0               | R/W-0             | R/W-0            | R/W-0            |
| 7:0       | ICTMR             | ICI<              | 1:0>              | ICOV              | ICBNE             |                   | ICM<2:0>         |                  |

# REGISTER 15-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

# Legend:

| R = Readable bit                            | W = Writable bit | U = Unimplemented bit |                  |
|---------------------------------------------|------------------|-----------------------|------------------|
| -n = Bit Value at POR: ('0', '1', x = unkno | own)             | P = Programmable bit  | r = Reserved bit |

| bit 31-16 | Unimplemented: Read as '0'                                                                                                                        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 15    | <b>ON:</b> Input Capture Module Enable bit <sup>(1)</sup>                                                                                         |
|           | 1 = Module is enabled                                                                                                                             |
|           | 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications                                            |
| bit 14    | Unimplemented: Read as '0'                                                                                                                        |
| bit 13    | SIDL: Stop in Idle Control bit                                                                                                                    |
|           | <ul><li>1 = Halt in Idle mode</li><li>0 = Continue to operate in Idle mode</li></ul>                                                              |
| bit 12-10 | Unimplemented: Read as '0'                                                                                                                        |
| bit 9     | FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)                                                                        |
|           | 1 = Capture rising edge first                                                                                                                     |
|           | 0 = Capture falling edge first                                                                                                                    |
| bit 8     | C32: 32-bit Capture Select bit                                                                                                                    |
|           | 1 = 32-bit timer resource capture                                                                                                                 |
|           | 0 = 16-bit timer resource capture                                                                                                                 |
| bit 7     | ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')                                                             |
|           | 0 = Timer3 is the counter source for capture                                                                                                      |
|           |                                                                                                                                                   |
| DIT 6-5   | ICI<1:0>: Interrupt Control bits                                                                                                                  |
|           | 10 = Interrupt on every tourth capture event                                                                                                      |
|           | 01 = Interrupt on every second capture event                                                                                                      |
|           | 00 = Interrupt on every capture event                                                                                                             |
| bit 4     | ICOV: Input Capture Overflow Status Flag bit (read-only)                                                                                          |
|           | 1 = Input capture overflow has occurred                                                                                                           |
|           | 0 = No input capture overflow has occurred                                                                                                        |
| bit 3     | ICBNE: Input Capture Buffer Not Empty Status bit (read-only)                                                                                      |
|           | <ul> <li>1 = Input capture buffer is not empty; at least one more capture value can be read</li> <li>0 = Input capture buffer is empty</li> </ul> |
| Note 1:   | When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the                                              |
|           | STOCEN Gyole infinediately following the instruction that deals the module's ON bit.                                                              |

| REGIST    | ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)                                                                                                                                                                       |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 17    | SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)                                                                                                                                                           |
|           | 1 = Frame synchronization pulse coincides with the first bit clock                                                                                                                                                       |
| bit 16    | <b>ENHBITE:</b> Enhanced Buffer Enable bit <sup>(2)</sup>                                                                                                                                                                |
| Sit 10    | 1 = Enhanced Buffer mode is enabled                                                                                                                                                                                      |
|           | 0 = Enhanced Buffer mode is disabled                                                                                                                                                                                     |
| bit 15    | ON: SPI Peripheral On bit <sup>(1)</sup>                                                                                                                                                                                 |
|           | 1 = SPI Peripheral is enabled                                                                                                                                                                                            |
| hit 14    | Unimplemented: Read as '0'                                                                                                                                                                                               |
| bit 13    | SIDL: Stop in Idle Mode bit                                                                                                                                                                                              |
|           | 1 = Discontinue module operation when the device enters Idle mode                                                                                                                                                        |
|           | 0 = Continue module operation when the device enters Idle mode                                                                                                                                                           |
| bit 12    | <b>DISSDO:</b> Disable SDOx pin bit                                                                                                                                                                                      |
|           | 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register $0 = SDOx pin is controlled by the module$                                                                                         |
| bit 11-10 | MODE<32.16>: 32/16-Bit Communication Select bits                                                                                                                                                                         |
|           | When AUDEN = 1:                                                                                                                                                                                                          |
|           | MODE32 MODE16 Communication                                                                                                                                                                                              |
|           | 1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame                                                                                                                                                                |
|           | 1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame                                                                                                                                                                |
|           | 0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame                                                                                                                                                                |
|           |                                                                                                                                                                                                                          |
|           | When AUDEN = 0:                                                                                                                                                                                                          |
|           | MODE32 MODE16 Communication                                                                                                                                                                                              |
|           | 1 	 x 	 32-bit                                                                                                                                                                                                           |
|           | 0 0 <b>8-bit</b>                                                                                                                                                                                                         |
| bit 9     | SMP: SPI Data Input Sample Phase bit                                                                                                                                                                                     |
|           | Master mode (MSTEN = 1):                                                                                                                                                                                                 |
|           | <ul> <li>Input data sampled at end of data output time</li> <li>Input data sampled at middle of data output time</li> </ul>                                                                                              |
|           | Slave mode (MSTEN = 0):                                                                                                                                                                                                  |
|           | SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.                                                                                                                                     |
|           | To write a '1' to this bit, the MSTEN value = 1 must first be written.                                                                                                                                                   |
| bit 8     | CKE: SPI Clock Edge Select bit <sup>(3)</sup>                                                                                                                                                                            |
|           | 1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit)<br>0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit) |
| bit 7     | SSEN: Slave Select Enable (Slave mode) bit                                                                                                                                                                               |
| bit i     | $1 = \overline{SSx}$ pin used for Slave mode                                                                                                                                                                             |
|           | $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.                                                                                                                                       |
| bit 6     | CKP: Clock Polarity Select bit <sup>(4)</sup>                                                                                                                                                                            |
|           | 1 = 1 dle state for clock is a high level; active state is a low level<br>0 = 1 dle state for clock is a low level; active state is a high level                                                                         |
|           |                                                                                                                                                                                                                          |
| Note 1:   | When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in                                                                                                                  |
|           | the SYSCLK cycle immediately following the instruction that clears the module's ON bit.                                                                                                                                  |
| 2:        | This bit can only be written when the ON bit = 0.                                                                                                                                                                        |
| 3:        | I his bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).                                                                                               |
| 4:        | When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value                                                                                                               |
|           | of CKP.                                                                                                                                                                                                                  |

2

# 18.1 I2C Control Registers

# TABLE 18-1: I2C1 AND I2C2 REGISTER MAP

| ess                      |                                 |           | Bits         |            |       |             |                  |              |              |           |       |             |            |                   |          |            |      |      |            |
|--------------------------|---------------------------------|-----------|--------------|------------|-------|-------------|------------------|--------------|--------------|-----------|-------|-------------|------------|-------------------|----------|------------|------|------|------------|
| Virtual Addr<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15        | 30/14      | 29/13 | 28/12       | 27/11            | 26/10        | 25/9         | 24/8      | 23/7  | 22/6        | 21/5       | 20/4              | 19/3     | 18/2       | 17/1 | 16/0 | All Resets |
| 5000                     | 1201000                         | 31:16     | —            | _          |       | _           | _                | -            | _            | _         | _     | _           | _          | _                 |          | _          | _    | _    | 0000       |
| 5000                     | 12CTCON                         | 15:0      | ON           | —          | SIDL  | SCLREL      | STRICT           | A10M         | DISSLW       | SMEN      | GCEN  | STREN       | ACKDT      | ACKEN             | RCEN     | PEN        | RSEN | SEN  | 1000       |
| 5010                     |                                 | 31:16     | —            | _          |       | —           | _                |              | —            | _         | _     | _           | _          | _                 | -        | _          | _    | _    | 0000       |
| 3010                     | 120131AI                        | 15:0      | ACKSTAT      | TRSTAT     |       | —           | _                | BCL          | GCSTAT       | ADD10     | IWCOL | I2COV       | D_A        | Р                 | S        | R_W        | RBF  | TBF  | 0000       |
| 5020                     |                                 | 31:16     | —            | —          | _     |             | —                |              |              | —         | _     |             |            |                   | _        |            | —    | _    | 0000       |
| 0020                     | 12017188                        | 15:0      | —            | —          | —     | —           | Address Register |              |              |           |       |             |            |                   |          |            | 0000 |      |            |
| 5030                     | I2C1MSK                         | 31:16     | —            | _          | _     | —           | —                |              |              | —         | _     | —           | —          | —                 | —        | —          | —    | _    | 0000       |
|                          |                                 | 15:0      | —            | _          |       |             | _                |              |              |           |       |             | Address Ma | ask Register      |          |            |      |      | 0000       |
| 5040                     | I2C1BRG                         | 31:16     | —            | —          | _     | -           | —                | _            | —            | —         |       | —           | —          | —                 | —        | —          | —    | —    | 0000       |
|                          |                                 | 15:0      | —            | _          | _     | —           |                  |              |              |           | Bau   | id Rate Ger | erator Reg | ister             |          |            |      |      | 0000       |
| 5050 I2C1TRN 31:16       |                                 |           |              |            |       |             |                  |              | —            | —         | _     | 0000        |            |                   |          |            |      |      |            |
|                          |                                 | 15:0      | —            | —          | _     |             | —                |              |              | _         |       |             |            | Transmit          | Register |            |      |      | 0000       |
| 5060                     | I2C1RCV                         | 31:16     | —            | _          |       |             | _                |              |              | _         |       | _           | _          |                   |          | _          | —    |      | 0000       |
|                          |                                 | 15:0      | —            | _          |       |             | _                |              |              | _         |       |             |            | Receive           | Register |            |      |      | 0000       |
| 5100                     | I2C2CON                         | 31:16     | _            | _          | -     | -           | -                | —            | —            | -         | -     | -           | -          | -                 | -        | -          | -    |      | 0000       |
|                          |                                 | 15:0      | ON           | _          | SIDL  | SCLREL      | STRICT           | A10M         | DISSLW       | SMEN      | GCEN  | STREN       | ACKDT      | ACKEN             | RCEN     | PEN        | RSEN | SEN  | 1000       |
| 5110                     | I2C2STAT                        | 31.10     |              |            |       |             | _                |              |              |           |       |             |            |                   | -        |            |      |      | 0000       |
|                          |                                 | 15.0      | ACKSTAT      | IRSIAI     |       |             |                  | BUL          | GCSTAT       | ADD IU    | IWCOL | 12000       | A          | P                 | 3        | <u></u> vv | KDF  | IBF  | 0000       |
| 5120                     | I2C2ADD                         | 15.0      |              |            |       |             |                  |              | _            | —         | _     | _           |            | —<br>Pogistor     | _        | _          | _    | _    | 0000       |
|                          |                                 | 31.16     |              |            |       |             | _                |              |              |           |       |             | Address    | Keyistei          | _        |            | _    |      | 0000       |
| 5130                     | I2C2MSK                         | 15.0      |              | _          |       | <u> </u>    | _                |              | 1            |           |       |             | Address Ma | l<br>Isk Register |          |            |      |      | 0000       |
|                          |                                 | 31:16     |              | _          | _     | _           |                  |              | _            |           |       |             |            |                   | _        |            |      | _    | 0000       |
| 5140                     | I2C2BRG                         | 15:0      | _            | _          | _     | _           |                  |              |              |           | Bau   | id Rate Ger | erator Reg | ister             |          |            |      |      | 0000       |
|                          |                                 | 31:16     | _            | _          | _     | _           | _                | _            | _            | _         | _     | _           | _          | _                 | _        | _          | _    | _    | 0000       |
| 5150                     | I2C2TRN                         | 15:0      | _            | _          | _     | _           | _                | _            | _            | _         |       |             |            | Transmit          | Register |            |      |      | 0000       |
| - 10-                    |                                 | 31:16     | _            | _          | _     | _           | _                | _            | _            | _         | _     | _           | _          | _                 | _        | _          | _    | _    | 0000       |
| 5160                     | I2C2RCV                         | 15:0      | _            | _          | _     | _           | _                | _            | _            | _         |       |             |            | Receive           | Register |            |      |      | 0000       |
| Legen                    | <b>d</b> : x = u                | nknow     | n value on l | Reset: — = |       | ented, read | as '0'. Rese     | t values are | e shown in h | exadecima |       |             |            |                   | -        |            |      |      |            |

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

# 24.1 Comparator Voltage Reference Control Register

| ess                      |                                 | a)        |       | Bits  |       |       |       |       |      |      |      |       |      |       |      |      |      |      |           |
|--------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|-------|------|-------|------|------|------|------|-----------|
| Virtual Addr<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6  | 21/5 | 20/4  | 19/3 | 18/2 | 17/1 | 16/0 | All Reset |
|                          |                                 |           |       |       |       |       |       |       |      |      |      |       |      |       |      |      | /    |      |           |
| 0000                     | CVRCON                          | 31:16     | _     | —     | —     | _     | _     | —     | _    | _    | _    | —     | -    | _     | -    | —    | —    | _    | 0000      |
| 9000                     | CVRCON                          | 15:0      | ON    | _     |       | _     | _     | _     | _    | _    | _    | CVROE | CVRR | CVRSS |      | CVR< | 3:0> |      | 0000      |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2     | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|------------------|------------------|
| 24.24        | r-0               | r-1               | r-1               | R/P               | r-1               | r-1                   | r-1              | R/P              |
| 31:24        | —                 | —                 | —                 | CP                | —                 | —                     | —                | BWP              |
| 00.40        | r-1               | r-1               | r-1               | r-1               | r-1               | R/P                   | R/P              | R/P              |
| 23:10        | —                 | —                 | —                 | —                 | —                 |                       | PWP<8:6>(3)      |                  |
| 45.0         | R/P               | R/P               | R/P               | R/P               | R/P               | R/P                   | r-1              | r-1              |
| 15:8         |                   |                   | PWP<              | <5:0>             |                   |                       | —                | —                |
| 7.0          | r-1               | r-1               | r-1               | R/P               | R/P               | R/P                   | R/P              | R/P              |
| 7:0          |                   | —                 | —                 | ICESEL            | <1:0> <b>(2)</b>  | JTAGEN <sup>(1)</sup> | DEBU             | G<1:0>           |

### REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

| Legend:           | r = Reserved bit | P = Programmable bit     |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31 Reserved: Write '0'

bit 30-29 Reserved: Write '1'

- bit 28 **CP:** Code-Protect bit
  - Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled

0 = Protection is enabled

bit 27-25 Reserved: Write '1'

bit 24 **BWP:** Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

1 = Boot Flash is writable

0 = Boot Flash is not writable

- bit 23-19 Reserved: Write '1'
- **Note 1:** This bit sets the value for the JTAGEN bit in the CFGCON register.
  - 2: The PGEC4/PGED4 pin pair is not available on all devices. Refer to the "**Pin Diagrams**" section for availability.
  - 3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

# TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

| DC CHARACTERISTICS                      |                        |      | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |                                    |  |  |  |  |
|-----------------------------------------|------------------------|------|-------------------------------------------------------|------------------------------------|--|--|--|--|
| Parameter<br>No.                        | Typical <sup>(3)</sup> | Max. | Units                                                 | Units Conditions                   |  |  |  |  |
| Operating Current (IDD) (Notes 1, 2, 5) |                        |      |                                                       |                                    |  |  |  |  |
| DC20                                    | 2                      | 3    | mA                                                    | mA 4 MHz (Note 4)                  |  |  |  |  |
| DC21                                    | 7                      | 10.5 | mA                                                    | 10 MHz                             |  |  |  |  |
| DC22                                    | 10                     | 15   | mA                                                    | 20 MHz (Note 4)                    |  |  |  |  |
| DC23                                    | 15                     | 23   | mA                                                    | 30 MHz (Note 4)                    |  |  |  |  |
| DC24                                    | 20                     | 30   | mA                                                    | 40 MHz                             |  |  |  |  |
| DC25                                    | 100                    | 150  | μA                                                    | +25°C, 3.3V LPRC (31 kHz) (Note 4) |  |  |  |  |

**Note 1:** A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
  - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)</li>
  - OSC2/CLKO is configured as an I/O input pin
  - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
  - CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
  - No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
  - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
  - · All I/O pins are configured as inputs and pulled to Vss
  - MCLR = VDD
  - CPU executing while(1) statement from Flash
  - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

## TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

| DC CHARACTERISTICS |        |                                                                       | $\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |                     |                     |       |                                                                                                                                       |  |
|--------------------|--------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Param.<br>No.      | Symbol | Characteristics                                                       | Min.                                                                                                                                                                                                                                                                       | Тур. <sup>(1)</sup> | Max.                | Units | Conditions                                                                                                                            |  |
| DI60a              | licl   | Input Low Injection<br>Current                                        | 0                                                                                                                                                                                                                                                                          | _                   | <sub>-5</sub> (2,5) | mA    | This parameter applies to all pins,<br>with the exception of the power<br>pins.                                                       |  |
| DI60b              | Іісн   | Input High Injection<br>Current                                       | 0                                                                                                                                                                                                                                                                          | _                   | +5(3,4,5)           | mA    | This parameter applies to all pins,<br>with the exception of all 5V tolerant<br>pins, and the SOSCI, SOSCO,<br>OSC1, D+, and D- pins. |  |
| DI60c              | ∑lict  | Total Input Injection<br>Current (sum of all I/O<br>and Control pins) | -20 <b>(6)</b>                                                                                                                                                                                                                                                             | _                   | +20(6)              | mA    | Absolute instantaneous sum of all ± input injection currents from all I/O pins ( IICL +  IICH  ) $\leq \sum$ IICT )                   |  |

**Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (VSS - 0.3). Characterized but not tested.

**3:** VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.



#### FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

## TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

| AC CHARACTERISTICS  |                      |                                              | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |                     |      |            |                    |
|---------------------|----------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------------|--------------------|
| Param.<br>No.       | Symbol               | Characteristics <sup>(1)</sup>               | Min.                                                                                                                                                                                                                                                                                | Тур. <sup>(2)</sup> | Max. | Units      | Conditions         |
| SP10                | TscL                 | SCKx Output Low Time (Note 3)                | Tsck/2                                                                                                                                                                                                                                                                              | —                   | _    | ns         |                    |
| SP11                | TscH                 | SCKx Output High Time (Note 3)               | Tsck/2                                                                                                                                                                                                                                                                              | _                   | _    | ns         | —                  |
| SP20                | TscF                 | SCKx Output Fall Time (Note 4)               | —                                                                                                                                                                                                                                                                                   | —                   | —    | ns         | See parameter DO32 |
| SP21                | TscR                 | SCKx Output Rise Time (Note 4)               | _                                                                                                                                                                                                                                                                                   | _                   | _    | ns         | See parameter DO31 |
| SP30                | TDOF                 | SDOx Data Output Fall Time (Note 4)          | _                                                                                                                                                                                                                                                                                   | —                   |      | ns         | See parameter DO32 |
| SP31                | TDOR                 | SDOx Data Output Rise Time (Note 4)          | _                                                                                                                                                                                                                                                                                   | —                   | _    | ns         | See parameter DO31 |
| SP35 TscH2doV,      |                      | SDOx Data Output Valid after<br>SCKx Edge    | _                                                                                                                                                                                                                                                                                   |                     | 15   | ns         | VDD > 2.7V         |
| TscL2DoV            | _                    |                                              | _                                                                                                                                                                                                                                                                                   | 20                  | ns   | VDD < 2.7V |                    |
| SP36                | TDOV2sc,<br>TDOV2scL | SDOx Data Output Setup to<br>First SCKx Edge | 15                                                                                                                                                                                                                                                                                  | —                   |      | ns         | —                  |
| SP40 TDIV2<br>TDIV2 | TDIV2scH,            | Setup Time of SDIx Data Input to SCKx Edge   | 15                                                                                                                                                                                                                                                                                  | _                   | _    | ns         | VDD > 2.7V         |
|                     | TDIV2scL             |                                              | 20                                                                                                                                                                                                                                                                                  | —                   |      | ns         | VDD < 2.7V         |
| SP41                | TscH2DIL,            | Hold Time of SDIx Data Input                 | 15                                                                                                                                                                                                                                                                                  | —                   | _    | ns         | VDD > 2.7V         |
| TscL2DIL            |                      | to SCKx Edge                                 | 20                                                                                                                                                                                                                                                                                  | —                   | —    | ns         | VDD < 2.7V         |

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

**3:** The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

# FIGURE 30-23: EJTAG TIMING CHARACTERISTICS



## TABLE 30-42: EJTAG TIMING REQUIREMENTS

| AC CHARACTERISTICS   |            |                                                  | Standard Operating Co<br>(unless otherwise state<br>Operating temperature |      |       | $\begin{array}{l} \mbox{onditions: 2.3V to 3.6V} \\ \mbox{ed}) \\ \mbox{-40}^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ \mbox{-40}^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |
|----------------------|------------|--------------------------------------------------|---------------------------------------------------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Param.<br>No. Symbol |            | Description <sup>(1)</sup>                       | Min.                                                                      | Max. | Units | Conditions                                                                                                                                                                                                               |
| EJ1                  | Ттсксус    | TCK Cycle Time                                   | 25                                                                        | —    | ns    | —                                                                                                                                                                                                                        |
| EJ2                  | Ттскнідн   | TCK High Time                                    | 10                                                                        | —    | ns    | —                                                                                                                                                                                                                        |
| EJ3                  | TTCKLOW    | TCK Low Time                                     | 10                                                                        | —    | ns    | —                                                                                                                                                                                                                        |
| EJ4                  | TTSETUP    | TAP Signals Setup Time Before<br>Rising TCK      | 5                                                                         | —    | ns    | _                                                                                                                                                                                                                        |
| EJ5                  | TTHOLD     | TAP Signals Hold Time After<br>Rising TCK        | 3                                                                         | -    | ns    | _                                                                                                                                                                                                                        |
| EJ6                  | TTDOOUT    | TDO Output Delay Time from<br>Falling TCK        | -                                                                         | 5    | ns    | _                                                                                                                                                                                                                        |
| EJ7                  | TTDOZSTATE | TDO 3-State Delay Time from<br>Falling TCK       | —                                                                         | 5    | ns    | _                                                                                                                                                                                                                        |
| EJ8                  | TTRSTLOW   | TRST Low Time                                    | 25                                                                        | —    | ns    | —                                                                                                                                                                                                                        |
| EJ9                  | Trf        | TAP Signals Rise/Fall Time, All Input and Output | _                                                                         | _    | ns    | _                                                                                                                                                                                                                        |

Note 1: These parameters are characterized, but not tested in manufacturing.







# 36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]





Microchip Technology Drawing C04-187C Sheet 1 of 2