

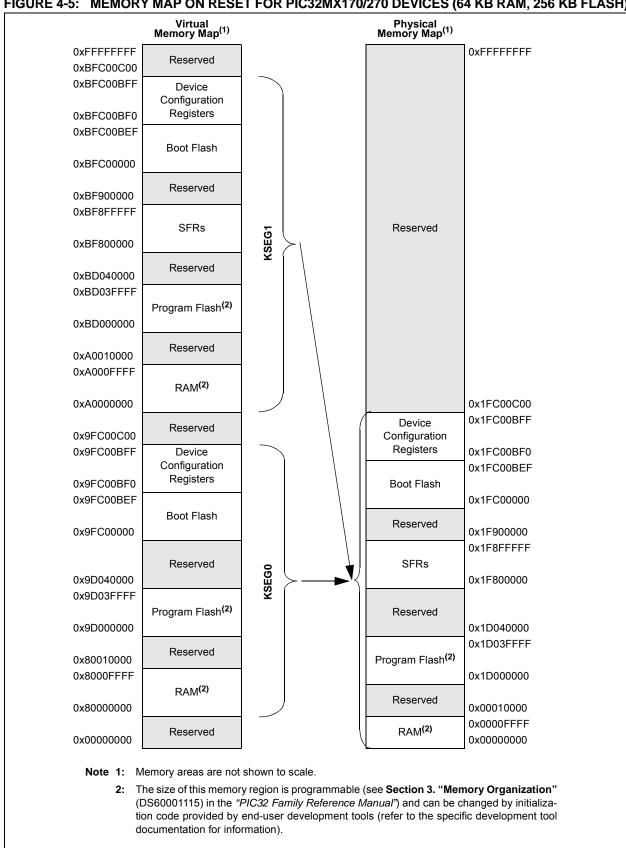


#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

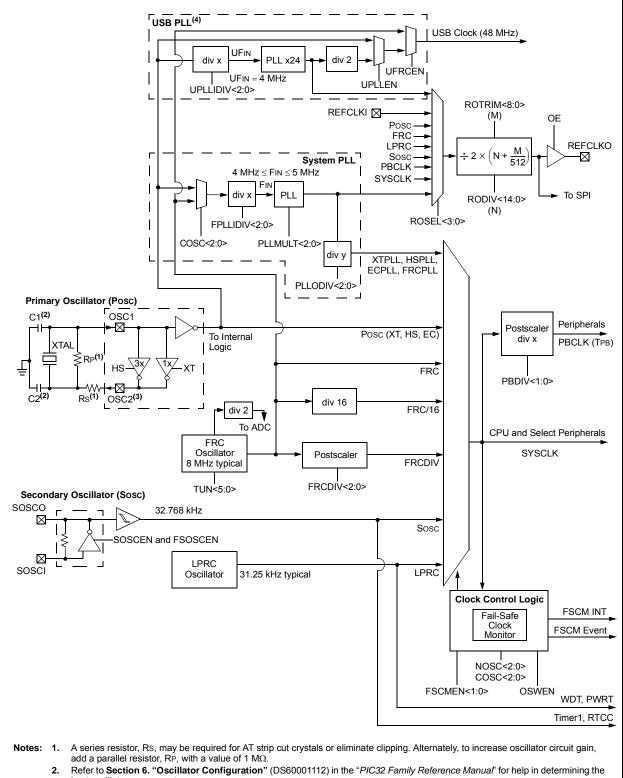
#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


#### Details

E·XFI

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | MIPS32® M4K™                                                                    |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 40MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                    |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 256KB (256K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 64K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                     |
| Data Converters            | A/D 10x10b                                                                      |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                                  |
| Supplier Device Package    | 28-SOIC                                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx170f256bt-i-so |
|                            |                                                                                 |

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# FIGURE 8-1: OSCILLATOR DIAGRAM



 Refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual" for help in determinin best oscillator components.

3. The PBCLK out is only available on the OSC2 pin in certain clock modes.

4. The USB PLL is only available on PIC32MX2XX devices.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

#### REGISTER 10-7: U1IE: USB INTERRUPT ENABLE REGISTER

|              |                   | •                 |                   |                   |                   |                   |                       |                                                  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|--------------------------------------------------|
| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1      | Bit<br>24/16/8/0                                 |
| 31:24        | U-0                   | U-0                                              |
| 51.24        | —                 | —                 | —                 | —                 | —                 | —                 | —                     | —                                                |
| 22.16        | U-0                   | U-0                                              |
| 23:16        | -                 | —                 | —                 | —                 | —                 | —                 | —                     | —                                                |
| 15:8         | U-0                   | U-0                                              |
| 15.0         | _                 | —                 | _                 | _                 | —                 | _                 | _                     | —                                                |
|              | R/W-0                 | R/W-0                                            |
| 7:0          | STALLIE           | ATTACHIE          | RESUMEIE          | IDLEIE            | TRNIE             | SOFIE             | UERRIE <sup>(1)</sup> | URSTIE <sup>(2)</sup><br>DETACHIE <sup>(3)</sup> |

# Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

#### bit 31-8 Unimplemented: Read as '0'

| bit 7 | STALLIE: STALL Handshake Interrupt Enable bit |
|-------|-----------------------------------------------|
|       |                                               |

- 1 = STALL interrupt is enabled
- 0 = STALL interrupt is disabled
- bit 6 ATTACHIE: ATTACH Interrupt Enable bit
  - 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled
- bit 5 **RESUMEIE:** RESUME Interrupt Enable bit
  - 1 = RESUME interrupt is enabled
  - 0 = RESUME interrupt is disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
  - 1 = Idle interrupt is enabled
  - 0 = Idle interrupt is disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
  - 1 = TRNIF interrupt is enabled
  - 0 = TRNIF interrupt is disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
  - 1 = SOFIF interrupt is enabled
  - 0 = SOFIF interrupt is disabled
- bit 1 UERRIE: USB Error Interrupt Enable bit<sup>(1)</sup>
  - 1 = USB Error interrupt is enabled
  - 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit<sup>(2)</sup>
  - 1 = URSTIF interrupt is enabled
  - 0 = URSTIF interrupt is disabled

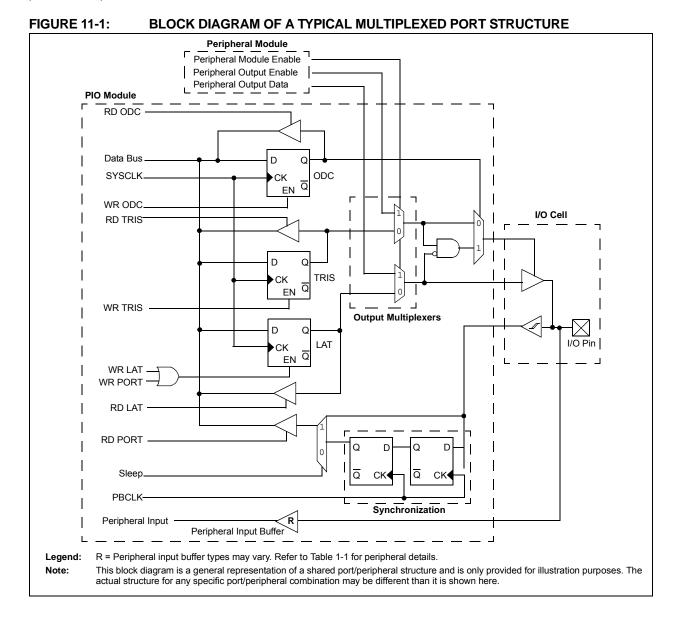
#### DETACHIE: USB Detach Interrupt Enable bit<sup>(3)</sup>

- 1 = DATTCHIF interrupt is enabled
- 0 = DATTCHIF interrupt is disabled

**Note 1:** For an interrupt to propagate USBIF, the UERRIE (U1IE<1>) bit must be set.

- 2: Device mode.
- 3: Host mode.

# 11.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC<sup>®</sup> MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Key features of this module include:

- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.



| TABL                        | E 11-7:              | PEI       | RIPHER |       | SELEC |       | PUT RE | GISTER | MAP ( | CONTIN | IUED) |      |      |      |      |      |        |      |            |
|-----------------------------|----------------------|-----------|--------|-------|-------|-------|--------|--------|-------|--------|-------|------|------|------|------|------|--------|------|------------|
| SS                          |                      |           |        |       |       |       |        |        |       | В      | its   |      |      |      |      |      |        |      |            |
| Virtual Address<br>(BF80_#) | Register<br>Name     | Bit Range | 31/15  | 30/14 | 29/13 | 28/12 | 27/11  | 26/10  | 25/9  | 24/8   | 23/7  | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1   | 16/0 | All Resets |
| FB4C                        | RPB8R                | 31:16     | _      | -     | —     | -     | _      | -      | _     | _      | -     | —    | _    | —    | _    | _    | _      | —    | 0000       |
| 1040                        | IN DOIX              | 15:0      | _      |       |       |       | —      |        | _     | —      |       |      | —    | —    |      | RPB8 | <3:0>  |      | 0000       |
| FB50                        | RPB9R                | 31:16     | —      | —     | —     | —     | —      | —      | _     | —      | —     | —    | —    | —    | _    | —    | —      | —    | 0000       |
| 1 830                       | KF D9K               | 15:0      | —      | _     | —     | _     | —      | —      | -     |        | —     | —    | _    | —    |      | RPB9 | <3:0>  |      | 0000       |
| FB54                        | RPB10R               | 31:16     | —      | _     | —     | _     | —      | —      | -     |        | —     | —    | _    | —    | -    | _    | —      | —    | 0000       |
| FB34                        | REDIUR               | 15:0      | —      | —     | _     | —     | —      | —      |       |        | —     | —    | —    | —    |      | RPB1 | 0<3:0> |      | 0000       |
| FB58                        | RPB11R               | 31:16     | —      | —     | _     | —     | —      | —      |       |        | —     | —    | —    | —    |      |      | _      | —    | 0000       |
| FB30                        | RPBIIR               | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPB1 | 1<3:0> |      | 0000       |
| FB60                        | RPB13R               | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB00                        | RPBISR               | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPB1 | 3<3:0> |      | 0000       |
| FB64                        | RPB14R               | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB04                        |                      | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPB1 | 4<3:0> |      | 0000       |
| FB68                        | RPB15R               | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB00                        |                      | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPB1 | 5<3:0> |      | 0000       |
| FB6C                        | RPC0R <sup>(3)</sup> | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FBOC                        | RECOR                | 15:0      | —      | —     | —     | —     | —      | —      | -     |        | —     | —    | -    | —    |      | RPCC | <3:0>  |      | 0000       |
| FB70                        | RPC1R <sup>(3)</sup> | 31:16     | —      | —     | _     | —     | —      | _      |       |        | —     | —    | —    | —    |      |      | _      | —    | 0000       |
| FB/U                        | RPUIK                | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPC1 | <3:0>  |      | 0000       |
| FB74                        | RPC2R <sup>(1)</sup> | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB/4                        | RP62R <sup>4</sup>   | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPC2 | <3:0>  |      | 0000       |
| FB78                        | RPC3R <sup>(3)</sup> | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB/0                        | RPGSR                | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPC3 | <3:0>  |      | 0000       |
| FB7C                        | RPC4R <sup>(1)</sup> | 31:16     | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    | _    | _    | _      | _    | 0000       |
| FB/C                        | RPC4R <sup>V</sup>   | 15:0      | _      | —     | _     | _     | -      | —      | _     | _      | _     | _    | _    | —    |      | RPC4 | <3:0>  |      | 0000       |
| FB80                        | RPC5R <sup>(1)</sup> | 31:16     |        | —     | —     | —     | —      | —      | _     |        | —     | _    | —    | —    | _    | _    | _      | _    | 0000       |
| FB80                        | RPUSK"               | 15:0      |        |       |       |       | —      | _      | _     | _      | _     |      | —    | —    |      | RPC5 | i<3:0> |      | 0000       |
| FB84                        | RPC6R <sup>(1)</sup> | 31:16     |        |       |       |       | —      | _      | _     | _      | _     |      | —    | —    | _    | —    |        | —    | 0000       |
| FB04                        | RPU0K"               | 15:0      |        |       |       |       | —      | _      | _     | _      | _     |      | —    | —    |      | RPC  | <3:0>  |      | 0000       |
| FB88                        | RPC7R <sup>(1)</sup> | 31:16     |        | —     |       | —     | —      | —      | _     |        | —     |      | —    | —    | _    | _    | —      |      | 0000       |
| F B 08                      | RPU/R <sup>(1)</sup> | 15:0      | _      | _     | —     | _     | _      | —      | —     | _      | —     |      | _    | _    |      | RPC7 | <3:0>  |      | 0000       |

#### OT AUTOUT DEALATED MAD

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: 3:

This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices.

| Bit Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24     | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 02:16     | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16     | —                 | —                 | -                 | -                 | _                 | _                 | -                | —                |
| 45.0      | R/W-0             | U-0               | R/W-0             | U-0               | U-0               | U-0               | R/W-0            | R/W-0            |
| 15:8      | 0N <sup>(1)</sup> | —                 | SIDL              | _                 | _                 | _                 | FEDGE            | C32              |
| 7.0       | R/W-0             | R/W-0             | R/W-0             | R-0               | R-0               | R/W-0             | R/W-0            | R/W-0            |
| 7:0       | ICTMR             | ICI<              | 1:0>              | ICOV              | ICBNE             |                   |                  |                  |

## REGISTER 15-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

# Legend:

| R = Readable bit                           | W = Writable bit | U = Unimplemented bit |                  |
|--------------------------------------------|------------------|-----------------------|------------------|
| -n = Bit Value at POR: ('0', '1', x = unkn | own)             | P = Programmable bit  | r = Reserved bit |

| bit 31-16 | Unimplemented: Read as '0'                                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 15    | <b>ON:</b> Input Capture Module Enable bit <sup>(1)</sup>                                                                                                                                |
|           | 1 = Module is enabled                                                                                                                                                                    |
|           | 0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications                                                                                   |
| bit 14    | Unimplemented: Read as '0'                                                                                                                                                               |
| bit 13    | SIDL: Stop in Idle Control bit                                                                                                                                                           |
|           | <ul> <li>1 = Halt in Idle mode</li> <li>0 = Continue to operate in Idle mode</li> </ul>                                                                                                  |
| bit 12-10 | Unimplemented: Read as '0'                                                                                                                                                               |
| bit 9     | FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)                                                                                                               |
|           | 1 = Capture rising edge first                                                                                                                                                            |
|           | 0 = Capture falling edge first                                                                                                                                                           |
| bit 8     | C32: 32-bit Capture Select bit                                                                                                                                                           |
|           | 1 = 32-bit timer resource capture                                                                                                                                                        |
|           | 0 = 16-bit timer resource capture                                                                                                                                                        |
| bit 7     | ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')                                                                                                    |
|           | 0 = Timer3 is the counter source for capture                                                                                                                                             |
|           | 1 = Timer2 is the counter source for capture                                                                                                                                             |
| bit 6-5   | ICI<1:0>: Interrupt Control bits                                                                                                                                                         |
|           | <ul> <li>11 = Interrupt on every fourth capture event</li> <li>10 = Interrupt on every third capture event</li> </ul>                                                                    |
|           | 01 = Interrupt on every second capture event                                                                                                                                             |
|           | 00 = Interrupt on every capture event                                                                                                                                                    |
| bit 4     | ICOV: Input Capture Overflow Status Flag bit (read-only)                                                                                                                                 |
|           | 1 = Input capture overflow has occurred                                                                                                                                                  |
|           | 0 = No input capture overflow has occurred                                                                                                                                               |
| bit 3     | ICBNE: Input Capture Buffer Not Empty Status bit (read-only)                                                                                                                             |
|           | <ul> <li>1 = Input capture buffer is not empty; at least one more capture value can be read</li> <li>0 = Input capture buffer is empty</li> </ul>                                        |
| Note 1:   | When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. |
|           | STOCEN Gyole infinediately following the instruction that deals the module's ON bit.                                                                                                     |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4    | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0               | U-0               | U-0                  | U-0               | U-0               | U-0              | U-0              |
| 31.24        |                   | —                 | —                 | _                    | _                 | -                 | —                | —                |
| 00.10        | U-0               | U-0               | U-0               | U-0                  | U-0               | U-0               | U-0              | U-0              |
| 23:16        |                   | —                 | —                 | _                    | _                 |                   | —                | _                |
| 45.0         | R/W-0             | U-0               | R/W-0             | U-0                  | U-0               | U-0               | U-0              | U-0              |
| 15:8         | ON <sup>(1)</sup> | —                 | SIDL              | _                    | _                 | _                 | —                | _                |
| 7.0          | U-0               | U-0               | R/W-0             | R-0                  | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          |                   | —                 | OC32              | OCFLT <sup>(2)</sup> | OCTSEL            | OCM<2:0>          |                  |                  |

### REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit<sup>(1)</sup>
  - 1 = Output Compare peripheral is enabled
  - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
  - 1 = Discontinue module operation when the device enters Idle mode
  - 0 = Continue module operation when the device enters Idle mode

#### bit 12-6 Unimplemented: Read as '0'

- bit 5 OC32: 32-bit Compare Mode bit
  - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit<sup>(2)</sup>
  - 1 = PWM Fault condition has occurred (cleared in hardware only)
  - 0 = No PWM Fault condition has occurred
- bit 3 **OCTSEL:** Output Compare Timer Select bit
  - 1 = Timer3 is the clock source for this Output Compare module
  - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
  - 111 = PWM mode on OCx; Fault pin enabled
  - 110 = PWM mode on OCx; Fault pin disabled
  - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
  - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
  - 011 = Compare event toggles OCx pin
  - 010 = Initialize OCx pin high; compare event forces OCx pin low
  - 001 = Initialize OCx pin low; compare event forces OCx pin high
  - 000 = Output compare peripheral is disabled but continues to draw current

# **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

**2:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

# 19.1 UART Control Registers

# TABLE 19-1: UART1 AND UART2 REGISTER MAP

| np for point | ess                         |                  | 6         |        |        |        |       |        |       |       | Bi          | ts                  |         |       |             |        |       |        |       | 6          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------|--------|--------|--------|-------|--------|-------|-------|-------------|---------------------|---------|-------|-------------|--------|-------|--------|-------|------------|
| 6000         0 MODE         15.0         ON         -         SIDL         IREN         RTSMD         -         UEN<1:0>         WAKE         LPBACK         ABAUD         RXINV         BRGH         PDEL<1:0>         STSL         0.00           610         U1STA(1)         31:16         -         -         -         -         ADM_EN         VERSE         LPBACK         ABAUD         RXINV         BRGH         PDEL<1:0>         STSL         0.00           600         U1STA(1)         15.0         UTXINV         URXEN         UTXENK         UTXEN         TRM         URXEN         TRMT         URXEN         ADDEN         RIDE         PERR         PERR         OER         URXDA         0100           600         U1TXREG         31:16         -         -         -         -         -         -         -         -         0000           6100         U1RXREG         31:16         -         -         -         -         -         -         -         -         -         0000           6100         U1RXREG         31:16         -         -         -         -         -         -         -         -         0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Virtual Address<br>(BF80_#) | Register<br>Name | Bit Range | 31/15  | 30/14  | 29/13  | 28/12 | 27/11  | 26/10 | 25/9  | 24/8        | 23/7                | 22/6    | 21/5  | 20/4        | 19/3   | 18/2  | 17/1   | 16/0  | All Resets |
| 610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610         610 <td>6000</td> <td></td> <td>31:16</td> <td></td> <td></td> <td>_</td> <td>_</td> <td>—</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>—</td> <td></td> <td></td> <td>—</td> <td>_</td> <td>_</td> <td>_</td> <td>0000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6000                        |                  | 31:16     |        |        | _      | _     | —      | _     |       | _           | _                   | —       |       |             | —      | _     | _      | _     | 0000       |
| 600         UTXIST         15.0         UTXIST         UTXINV         UTXRNV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                        | OTWODE           | 15:0      | ON     |        | SIDL   | IREN  | RTSMD  | —     | UEN   | -           | WAKE                | LPBACK  | ABAUD | RXINV       | BRGH   | PDSEI | L<1:0> | STSEL | 0000       |
| 15:0         15:0         01XBE         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6010                        | 111STA(1)        | 31:16     | _      | _      | _      | —     | —      | _     | _     | ADM_EN      |                     |         |       | ADDR        | 2<7:0> |       |        |       | 0000       |
| 600         UTXRE         1         -         -         -         -         -         -         -         -         -         -         000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000         0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0010                        | UIUIA            | 15:0      | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT        | URXIS               | EL<1:0> | ADDEN | RIDLE       | PERR   | FERR  | OERR   | URXDA | 0110       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6020                        |                  | 31:16     | —      | -      | —      | _     | —      | —     | -     | —           | _                   | —       | —     | _           | _      | _     | —      | _     | 0000       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0020                        | UTTAKLG          | 15:0      | _      |        | _      |       | _      | -     |       |             |                     |         | Tra   | nsmit Regis | ster   |       |        |       | 0000       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6030                        |                  | 31:16     | _      |        | _      |       | _      | -     |       | _           |                     | _       | _     |             | -      |       | _      |       | 0000       |
| 600       11       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0030                        | UTRAREG          | 15:0      | _      |        | _      |       | _      | -     |       |             |                     |         | Re    | ceive Regis | ster   |       |        |       | 0000       |
| 15:0         Bale Rate Generator Present         1000           6200         16:0 $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6040                        |                  | 31:16     | -      |        | -      |       | _      | -     |       | —           |                     | _       | -     |             | -      |       | -      |       | 0000       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00+0                        | 0 IDIXO          | 15:0      |        |        |        |       |        |       | Bau   | d Rate Gene | Jenerator Prescaler |         |       |             |        |       |        |       | 0000       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6200                        | 112MODE(1)       | 31:16     | _      | _      | _      | —     | —      | _     | _     | —           | -                   | —       | _     | -           | —      | _     | —      | _     | 0000       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0200                        | OZINODL          | 15:0      | ON     |        | SIDL   | IREN  | RTSMD  | —     | UEN   | <1:0>       | WAKE                | LPBACK  | ABAUD | RXINV       | BRGH   | PDSE  | L<1:0> | STSEL | 0000       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6210                        | 112974(1)        | 31:16     | _      |        | _      |       | _      | -     |       | ADM_EN      |                     |         |       | ADDR        | <7:0>  |       |        |       | 0000       |
| 6220     U2TXREG     15:0     -     -     -     -     -     -     -     -     000       6230     U2RXREG     31:16     -     -     -     -     -     -     -     -     0000       6230     U2RXREG     31:16     -     -     -     -     -     -     -     -     0000       6240     U2BRG(1)     31:16     -     -     -     -     -     -     -     0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0210                        | 0231A. /         | 15:0      | UTXISE | L<1:0> | UTXINV | URXEN | UTXBRK | UTXEN | UTXBF | TRMT        | URXISE              | EL<1:0> | ADDEN | RIDLE       | PERR   | FERR  | OERR   | URXDA | 0110       |
| 150     -     -     -     -     -     -     -     -     000       620     U2RXEG     31:16     -     -     -     -     -     -     -     -     000       620     U2BRG(1)     31:16     -     -     -     -     -     -     -     -     -     000       6240     U2BRG(1)     31:16     -     -     -     -     -     -     -     -     000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6220                        |                  | 31:16     | _      |        | _      |       | _      | -     |       | _           |                     | _       | _     |             | -      |       | _      |       | 0000       |
| 6230     U2RXREG     -     -     -     -     -     -     -     0000       6240     U2BRG(1)     31:16     -     -     -     -     -     -     -     0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0220                        | UZTARLO          | 15:0      | _      |        | _      |       | _      | _     |       |             |                     |         | Tra   | nsmit Regis | ster   |       |        |       | 0000       |
| 150       -       -       -       -       -       -       -       0000         6240       U2BRG <sup>(1)</sup> 31:16       -       -       -       -       -       -       -       -       0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6230                        |                  | 31:16     | _      | _      | _      | _     | _      | _     | _     | _           | _                   | _       | _     | _           | _      | _     | _      | _     | 0000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0230                        | UZNAREG          | 15:0      | _      | _      | _      | _     | _      | _     | _     |             |                     |         | Re    | ceive Regis | ster   |       |        |       | 0000       |
| 02240     02000     15:0     Baud Rate Generator Prescaler     0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6240                        |                  | 31:16     | _      | _      | _      | _     | _      | _     | _     | _           | _                   | _       | _     | _           | _      | _     | _      | _     | 0000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0240                        | UZDRG."          | 15:0      |        |        |        |       |        |       | Bau   | d Rate Gene | erator Pres         | caler   |       |             |        |       |        |       | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

# 21.1 RTCC Control Registers

### TABLE 21-1: RTCC REGISTER MAP

| ess                         |                                 | ē         |        |       |          |          |       |            |                   |           | Bits     |                       |           |         |         |         |            |       | ŝ          |
|-----------------------------|---------------------------------|-----------|--------|-------|----------|----------|-------|------------|-------------------|-----------|----------|-----------------------|-----------|---------|---------|---------|------------|-------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15  | 30/14 | 29/13    | 28/12    | 27/11 | 26/10      | 25/9              | 24/8      | 23/7     | 22/6                  | 21/5      | 20/4    | 19/3    | 18/2    | 17/1       | 16/0  | All Resets |
| 0200                        | RTCCON                          | 31:16     | —      | _     | —        | —        | —     | —          |                   |           |          |                       | CAL<      | <9:0>   |         |         |            |       | 0000       |
| 0200                        | RICCON                          | 15:0      | ON     | _     | SIDL     | —        | —     | —          |                   | —         | RTSECSEL | RTCCLKON              | —         |         | RTCWREN | RTCSYNC | HALFSEC    | RTCOE | 0000       |
| 0210                        | RTCALRM                         | 31:16     | —      |       |          | —        | —     | _          |                   | —         | —        | _                     | —         |         | —       | —       | _          | —     | 0000       |
| 0210                        | RICALIN                         | 15:0      | ALRMEN | CHIME | PIV      | ALRMSYNC |       | AMASI      | <b>&lt;</b> <3:0> | ARPT<7:0> |          |                       |           |         |         |         | 0000       |       |            |
| 0220                        | RTCTIME                         | 31:16     | —      | _     | HR1      | 0<1:0>   |       | HR01       | <3:0>             |           | —        | MIN10<2:0> MIN01<3:0> |           |         |         |         |            | xxxx  |            |
| 0220                        |                                 | 15:0      | —      |       | SEC10<2: | 0>       |       | SEC01<3:0> |                   |           | —        | —                     | —         | _       | _       | _       | —          | —     | xx00       |
| 0230                        | RTCDATE                         | 31:16     |        | YEAR  | 10<3:0>  |          |       | YEAR0      | 1<3:0>            |           | —        | —                     | —         | MONTH10 |         | MONTH   | 01<3:0>    |       | xxxx       |
| 0230                        | RICDAIL                         | 15:0      | _      | _     | DAY      | 10<1:0>  |       | DAY01      | 1<3:0>            |           | —        | —                     | —         |         | _       | W       | /DAY01<2:0 | >     | xx00       |
| 0240                        | ALRMTIME                        | 31:16     | _      |       | HR1      | 0<1:0>   |       | HR01       | <3:0>             |           | _        | М                     | IN10<2:0> |         |         | MIN01   | <3:0>      |       | xxxx       |
| 0240                        |                                 | 15:0      | —      |       | SEC10<2: | 0>       |       | SEC01<3:0> |                   |           | —        | _                     | —         |         | —       | —       | _          | —     | xx00       |
| 0250                        |                                 | 31:16     | _      | _     | _        | _        | _     | _          |                   | _         | —        | _                     | —         | MONTH10 |         | MONTH   | 01<3:0>    |       | 00xx       |
| 0250                        | 250 ALRMDATE                    | 15:0      |        | DAY1  | 0<3:0>   |          |       | DAY01      | <3:0>             |           | _        | _                     | _         | -       | _       | W       | /DAY01<2:0 | >     | xx0x       |

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

| Bit<br>Range | Bit<br>31/23/15/7       | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3      | Bit<br>26/18/10/2 | Bit<br>25/17/9/1       | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------------|-------------------|-------------------|-------------------|------------------------|-------------------|------------------------|------------------|--|--|--|
| 04.04        | U-0                     | U-0               | U-0               | U-0               | U-0                    | U-0               | R/W-0                  | R/W-0            |  |  |  |
| 31:24        | —                       |                   | _                 | _                 | —                      | —                 | CAL<9                  | :8>              |  |  |  |
| 00.40        | R/W-0                   | R/W-0             | R/W-0             | R/W-0             | R/W-0                  | R/W-0             | R/W-0                  | R/W-0            |  |  |  |
| 23:16        | CAL<7:0>                |                   |                   |                   |                        |                   |                        |                  |  |  |  |
| 45.0         | R/W-0                   | U-0               | R/W-0             | U-0               | U-0                    | U-0               | U-0                    | U-0              |  |  |  |
| 15:8         | ON <sup>(1,2)</sup>     | _                 | SIDL              | _                 | —                      | _                 | _                      |                  |  |  |  |
| 7.0          | R/W-0                   | R-0               | U-0               | U-0               | R/W-0                  | R-0               | R-0                    | R/W-0            |  |  |  |
| 7:0          | RTSECSEL <sup>(3)</sup> | RTCCLKON          |                   | _                 | RTCWREN <sup>(4)</sup> | RTCSYNC           | HALFSEC <sup>(5)</sup> | RTCOE            |  |  |  |
|              |                         |                   |                   |                   |                        |                   |                        |                  |  |  |  |

### REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

#### Legend:

| Logonal           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit<sup>(1,2)</sup> bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when the device enters Idle mode 0 = Continue normal operation when the device enters Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit<sup>(3)</sup> 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

**Note:** This register is reset only on a Power-on Reset (POR).

© 2011-2016 Microchip Technology Inc.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5   | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0               | U-0                 | U-0               | U-0               | U-0               | U-0              | U-0              |
|              | —                 | —                 |                     | _                 | _                 |                   | —                | _                |
| 00.40        | U-0               | U-0               | U-0                 | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                 | —                 | _                   | _                 | _                 |                   | —                | _                |
| 45.0         | R/W-0             | R/W-0             | R/W-0               | U-0               | U-0               | U-0               | U-0              | R-0              |
| 15:8         | ON <sup>(1)</sup> | COE               | CPOL <sup>(2)</sup> | _                 | —                 | —                 | —                | COUT             |
| 7.0          | R/W-1             | R/W-1             | U-0                 | R/W-0             | U-0               | U-0               | R/W-1            | R/W-1            |
| 7:0          | EVPOL<1:0>        |                   | _                   | CREF              | —                 | —                 | CCH              | <1:0>            |

#### REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

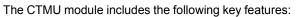
- bit 15 **ON:** Comparator ON bit<sup>(1)</sup>
  - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
  - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
  - 1 = Comparator output is driven on the output CxOUT pin
  - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit<sup>(2)</sup>
  - 1 = Output is inverted
  - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
  - 1 = Output of the Comparator is a '1'
  - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
  - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
  - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
  - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
  - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
  - 1 = Comparator non-inverting input is connected to the internal CVREF
  - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
  - 11 = Comparator inverting input is connected to the IVREF
  - 10 = Comparator inverting input is connected to the CxIND pin
  - 01 = Comparator inverting input is connected to the CxINC pin
  - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
  - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

# 24.1 Comparator Voltage Reference Control Register

| <b>TABLE 24-1</b> : | COMPARATOR VOLTAGE REFERENCE REGISTER MAP |
|---------------------|-------------------------------------------|
|---------------------|-------------------------------------------|

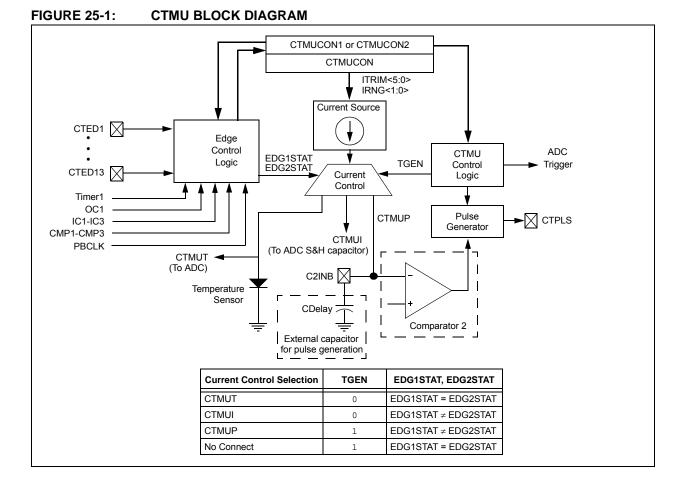
| ress<br>t)               |                                 | Ð         |       |       |       |       |       |       |      | Bits | i    |       |      |       |      |      |      |      | ŝ          |
|--------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|-------|------|-------|------|------|------|------|------------|
| Virtual Addr<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6  | 21/5 | 20/4  | 19/3 | 18/2 | 17/1 | 16/0 | All Resets |
| 0000                     |                                 | 31:16     | _     | _     | —     | —     | —     | —     | _    | _    | —    | —     | —    | _     | —    | _    | _    | —    | 0000       |
| 9800                     | CVRCON                          | 15:0      | ON    | _     | _     | _     | _     | _     | _    | _    | _    | CVROE | CVRR | CVRSS |      | CVR< | 3:0> |      | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# 25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.



- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- · Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 25-1.



© 2011-2016 Microchip Technology Inc.

NOTES:

# 29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

## 29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

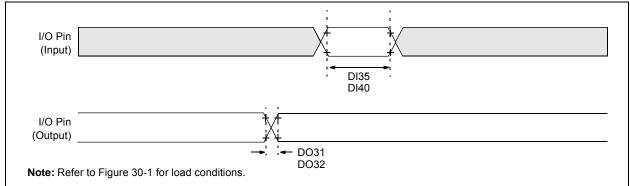
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

### 29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

# 29.9 PICkit 3 In-Circuit Debugger/ Programmer

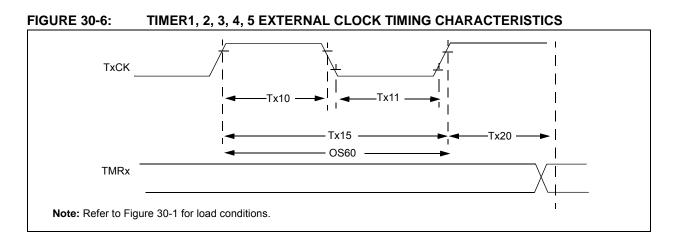

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

# 29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

#### FIGURE 30-3: I/O TIMING CHARACTERISTICS




#### TABLE 30-21: I/O TIMING REQUIREMENTS

| AC CHAF       | RACTERIS | STICS                | Standard Ope<br>(unless other<br>Operating terr | wise state |                        | ≤ +85°C fc | or Industria |            |
|---------------|----------|----------------------|-------------------------------------------------|------------|------------------------|------------|--------------|------------|
| Param.<br>No. | Symbol   | Characteris          | stics <sup>(2)</sup>                            | Min.       | Typical <sup>(1)</sup> | Max.       | Units        | Conditions |
| DO31          | TIOR     | Port Output Rise Tir |                                                 | 5          | 15                     | ns         | Vdd < 2.5V   |            |
|               |          |                      |                                                 |            | 5                      | 10         | ns           | Vdd > 2.5V |
| DO32          | TIOF     | Port Output Fall Tim | е                                               | _          | 5                      | 15         | ns           | Vdd < 2.5V |
|               |          |                      |                                                 |            | 5                      | 10         | ns           | VDD > 2.5V |
| DI35          | Tinp     | INTx Pin High or Lo  | 10                                              | _          | _                      | ns         | _            |            |
| DI40          | Trbp     | CNx High or Low Tir  | me (input)                                      | 2          | _                      |            | TSYSCLK      |            |

**Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.



# TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

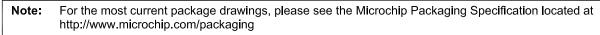
| AC CHA        | ARACTERIS                  | TICS <sup>(1)</sup>                       |                                                                             | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$ |                                            |         |      |       |                               |  |
|---------------|----------------------------|-------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|------|-------|-------------------------------|--|
| Param.<br>No. | Symbol Characteristics (4) |                                           |                                                                             |                                                                                                                                                                                                                                                                                       | Min.                                       | Typical | Max. | Units | Conditions                    |  |
| TA10          | T⊤xH                       | TxCK<br>High Time                         | Synchronow with presca                                                      |                                                                                                                                                                                                                                                                                       | [(12.5 ns or 1 ТРВ)/N]<br>+ 25 ns          | —       | —    | ns    | Must also meet parameter TA15 |  |
|               |                            |                                           | Asynchrono<br>with presca                                                   |                                                                                                                                                                                                                                                                                       | 10                                         | —       | _    | ns    | —                             |  |
| TA11          | T⊤xL                       | TxCK<br>Low Time                          | Synchronor<br>with presca                                                   |                                                                                                                                                                                                                                                                                       | [(12.5 ns or 1 Трв)/N]<br>+ 25 ns          | —       | _    | ns    | Must also meet parameter TA15 |  |
|               |                            |                                           | Asynchronous, with prescaler                                                |                                                                                                                                                                                                                                                                                       | 10                                         | _       | _    | ns    | —                             |  |
| TA15          | ΤτχΡ                       | TxCK<br>Input Period                      | Synchrono<br>with presca                                                    |                                                                                                                                                                                                                                                                                       | [(Greater of 25 ns or<br>2 Трв)/N] + 30 ns | -       | _    | ns    | VDD > 2.7V                    |  |
|               |                            |                                           |                                                                             |                                                                                                                                                                                                                                                                                       | [(Greater of 25 ns or<br>2 Трв)/N] + 50 ns | -       | —    | ns    | VDD < 2.7V                    |  |
|               |                            |                                           | Asynchrono<br>with presca                                                   |                                                                                                                                                                                                                                                                                       | 20                                         | -       | _    | ns    | VDD > 2.7V<br>(Note 3)        |  |
|               |                            |                                           |                                                                             |                                                                                                                                                                                                                                                                                       | 50                                         | -       | _    | ns    | VDD < 2.7V<br>(Note 3)        |  |
| OS60          | FT1                        | Input Freque<br>(oscillator en            | /T1CK Oscillator<br>requency Range<br>tor enabled by set<br>S (T1CON<1>) bi |                                                                                                                                                                                                                                                                                       | 32                                         | —       | 100  | kHz   | -                             |  |
| TA20          | TCKEXTMRL                  | Delay from E<br>Clock Edge t<br>Increment |                                                                             | К                                                                                                                                                                                                                                                                                     |                                            | —       | 1    | Трв   | —                             |  |

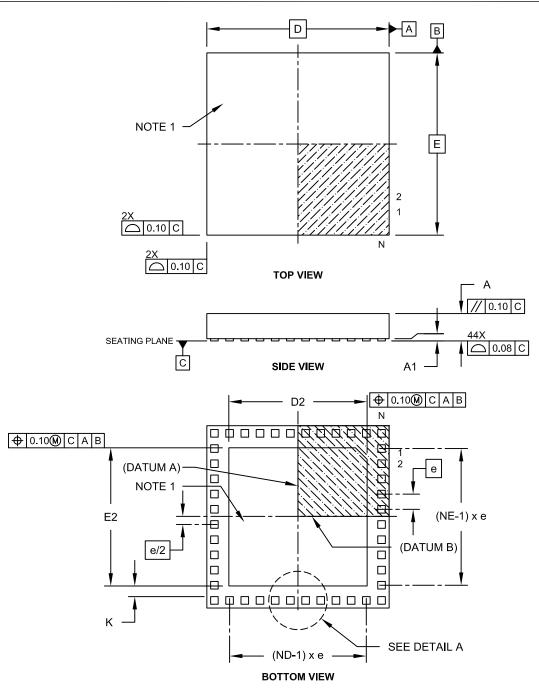
**Note 1:** Timer1 is a Type A timer.

**2:** This parameter is characterized, but not tested in manufacturing.

**3:** N = Prescale Value (1, 8, 64, 256).

| AC CHARAG                         | CTERISTIC | S <sup>(2)</sup>      | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                 |                            |  |  |  |
|-----------------------------------|-----------|-----------------------|------------------------------------------------------|-----------------|----------------------------|--|--|--|
| ADC Speed                         | TAD Min.  | Sampling<br>Time Min. | Rs Max.                                              | Vdd             | ADC Channels Configuration |  |  |  |
| 1 Msps to 400 ksps <sup>(1)</sup> | 65 ns     | 132 ns                | 500Ω                                                 | 3.0V to<br>3.6V | ANX CHX ADC                |  |  |  |
| Up to 400 ksps                    | 200 ns    | 200 ns                | 5.0 kΩ                                               | 2.5V to<br>3.6V | ANX CHX<br>ANX OF VREF-    |  |  |  |


#### TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

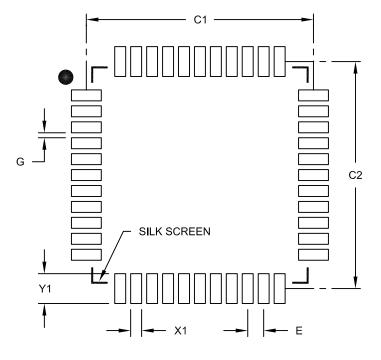

**Note 1:** External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

**3:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

# 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]






Microchip Technology Drawing C04-157C Sheet 1 of 2

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



# RECOMMENDED LAND PATTERN

|                          | MILLIMETERS |      |          |      |  |
|--------------------------|-------------|------|----------|------|--|
| Dimension                | Limits      | MIN  | NOM      | MAX  |  |
| Contact Pitch            | E           |      | 0.80 BSC |      |  |
| Contact Pad Spacing      | C1          |      | 11.40    |      |  |
| Contact Pad Spacing      | C2          |      | 11.40    |      |  |
| Contact Pad Width (X44)  | X1          |      |          | 0.55 |  |
| Contact Pad Length (X44) | Y1          |      |          | 1.50 |  |
| Distance Between Pads    | G           | 0.25 |          |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B