

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx210f016b-v-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

				Rem	appab	le Pe	riphe	rals					<u> </u>		ls)				
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	l²C	PMP	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels)	RTCC	I/O Pins	JTAG	Packages
PIC32MX110F016B	28	16+3	4	20	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX110F016C	36	16+3	4	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX110F016D	44	16+3	4	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX120F032B	28	32+3	8	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX120F032C	36	32+3	8	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Υ	VTLA
PIC32MX120F032D	44	32+3	8	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F064B	28	64+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F064C	36	64+3	16	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Υ	VTLA
PIC32MX130F064D	44	64+3	16	32	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX150F128B	28	128+3	32	20	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX150F128C	36	128+3	32	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX150F128D	44	128+3	32	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F256B	28	256+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F256D	44	256+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX170F256B	28	256+3	64	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX170F256D	44	256+3	64	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN

TABLE 1: PIC32MX1XX 28/36/44-PIN GENERAL PURPOSE FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/36/44pin Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF . Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF .
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers provide 4 GB unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs), and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX1XX/2XX 28/36/44-pin Family devices to execute from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space
- · Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

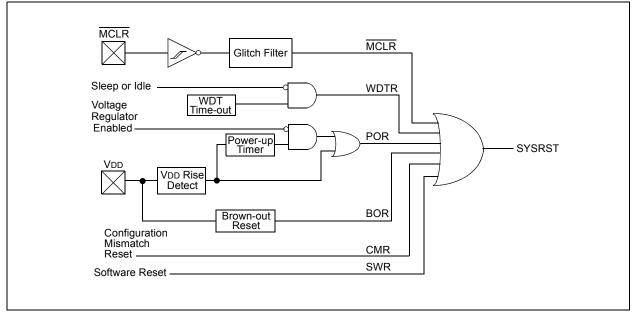
4.1 PIC32MX1XX/2XX 28/36/44-pin Family Memory Layout

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX1XX/2XX 28/36/44-pin Family devices are illustrated in Figure 4-1 through Figure 4-6.

Table 4-1 provides SFR memory map details.

NOTES:


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		_	_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_		_	_	_	—	—
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	_	—	MVEC	_		TPC<2:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vectored mode
 - 0 = Interrupt controller configured for Single-vectored mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer

bit 7-5 Unimplemented: Read as '0'

- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGIST	EK 10-1.			LUNDEL	JIAIUS NE	GISTER		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	—	—	-	-	—	-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—	—	-	-	—	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		_	-			—		—
7.0	R/WC-0, HS	U-0	R/WC-0, HS					
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF

REGISTER 10-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	pit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIF:** ID State Change Indicator bit
 - 1 = A change in the ID state was detected
 - 0 = No change in the ID state was detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1 ms, but different from last time
- 0 = USB line state has not been stable for 1 ms
- bit 4 ACTVIF: Bus Activity Indicator bit
 - 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
 - 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = A change on the session valid input was detected
 - 0 = No change on the session valid input was detected

TABLE 11-4: PORTB REGISTER MAP

ess										Bits									
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		—		_	—	—	—	_	—	_		—	_	—	—	0000
0100	ANGLED	15:0	ANSB15	ANSB14	ANSB13	ANSB12 ⁽²⁾	—	—	—	—	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	EOOF
6110	TRISB	31:16	-	_	_	1	_	—	—	—	-	—	-	-	—	-	_	_	0000
0110	IIKIOD	15:0	TRISB15	TRISB14	TRISB13	TRISB12 ⁽²⁾	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6 ⁽²⁾	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6120	PORTB	31:16	_	_	_		_	_	_	_		_	-						0000
0120	FORTB	15:0	RB15	RB14	RB13	RB12 ⁽²⁾	RB11	RB10	RB9	RB8	RB7	RC6 ⁽²⁾	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
6130	LATB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0150	LAID	15:0	LATB15	LATB14	LATB13	LATB12 ⁽²⁾	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6 ⁽²⁾	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
C1 4 0	0000	31:16		_	—	—	_	_	_	—	_	_	-	—	_	—	_	—	0000
6140	ODCB	15:0	ODCB15	ODCB14	ODCB13	ODCB12 ⁽²⁾	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
6150		31:16	-	—	—	-	_	_	_	—	-	_	_	_	_	-	_	—	0000
6150	CNPUB	15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12 ⁽²⁾	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6 ⁽²⁾	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
6160	CNPDB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0100	CNPDB	15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12 ⁽²⁾	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6 ⁽²⁾	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
6170	CNCONB	31:16	-	_	_		-	_	_	_		_			_		_	_	0000
0170	CINCOINE	15:0	ON	_	SIDL		-	_	_	_		_			_		_	_	0000
C400		31:16		—	—	-	—	—	—	_		—	Ι	-	—	-	—	-	0000
6180	CNENB	15:0	CNIEB15	CNIEB14	CNIEB13	CNIEB11 ⁽²⁾	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6(2)	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
		31:16	—		—		_	—	—	—	_	—	_	-	—	_	_	—	0000
6190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12 ⁽²⁾	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6 ⁽²⁾	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This bit is not available on PIC32MX2XX devices. The reset value for the TRISB register when this bit is not available is 0x0000EFBF.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		-	_	-	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	-
15.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit				

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I ² C module is busy	
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

NOTES:

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

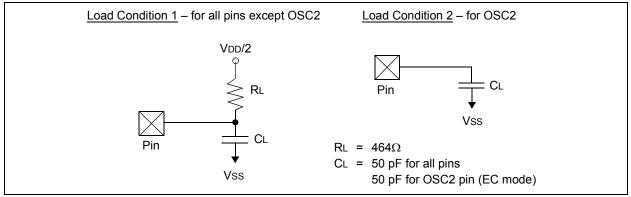
Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

3: See the "Pin Diagrams" section for the 5V tolerant pins.

30.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX 28/36/44-pin Family AC characteristics and timing parameters.

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

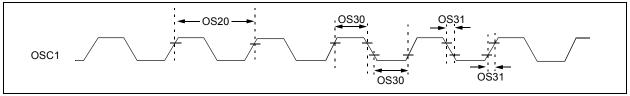


TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

АС СНА	RACTERI	STICS	(unles	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions					
DO56	Сю	All I/O pins and OSC2	_	—	50	pF	EC mode					
DO58	Св	SCLx, SDAx	—	—	400	pF	In I ² C mode					

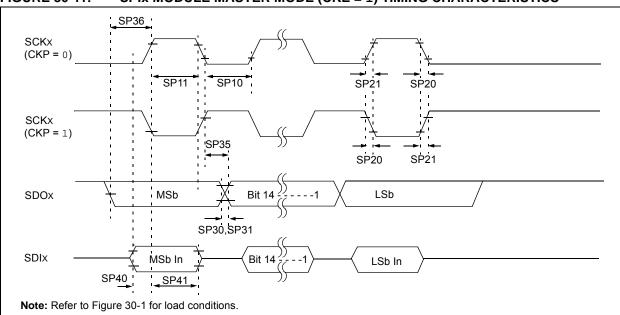
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-2: EXTERNAL CLOCK TIMING

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31 SP30** SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 30-1 for load conditions.

TABLE 30-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	_		ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_	_	ns	See parameter DO31	
SP35	TSCH2DOV,		—	—	15	ns	VDD > 2.7V	
TscL2Do		SCKx Edge		_	20	ns	VDD < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	—	_	ns	—	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,				15	ns	VDD > 2.7V	
	TscL2DoV		_		20	ns	VDD < 2.7V	
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	—	_	ns	—	
SP40	TDIV2SCH, TDIV2SCL		15	_	_	ns	VDD > 2.7V	
			20	—		ns	VDD < 2.7V	
SP41	TscH2DIL,	,	15	—	_	ns	VDD > 2.7V	
	TscL2DIL		20	—	_	ns	VDD < 2.7V	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

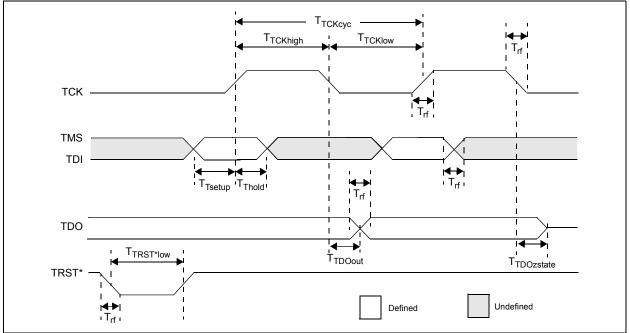
AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	—	μS	_		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	PBCLK must operate at a minimum of 800 kHz		
			400 kHz mode	0.6	_	μS	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	—	μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode (Note 1)	_	100	ns			
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode (Note 1)	—	300	ns			
IS25	TSU:DAT	T Data Input Setup Time	100 kHz mode	250		ns	_		
			400 kHz mode	100		ns			
			1 MHz mode (Note 1)	100	—	ns			
IS26	THD:DAT	Data Input	100 kHz mode	0		ns	—		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode (Note 1)	0	0.3	μS			
IS30	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated		
		Setup Time	400 kHz mode	600		ns	Start condition		
			1 MHz mode (Note 1)	250	—	ns			
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4000		ns	After this period, the first		
			400 kHz mode	600	—	ns	clock pulse is generated		
			1 MHz mode (Note 1)	250	—	ns			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000		ns			
		Setup Time	400 kHz mode	600		ns]		
			1 MHz mode (Note 1)	600		ns			

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No. Symbol Characteristics			Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
Clock P	arameters	S	•						
AD50	TAD	ADC Clock Period ⁽²⁾	65			ns	See Table 30-35		
Convers	sion Rate						·		
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—		
AD56	FCNV	Throughput Rate	—		1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed)	—	_	400	ksps	AVDD = 2.5V to 3.6V		
AD57	TSAMP	Sample Time	1 Tad	_	—	_	TSAMP must be \geq 132 ns		
Timing	Paramete	rs							
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾		1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	_		
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_		
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_		

TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.

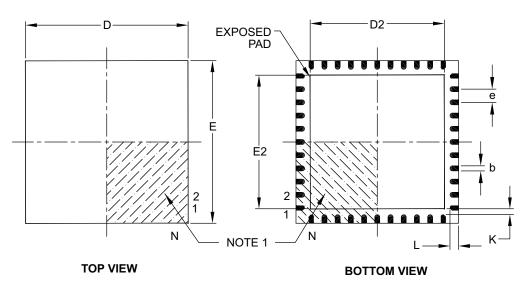
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

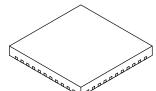
4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 30-23: EJTAG TIMING CHARACTERISTICS

TABLE 30-42: EJTAG TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions	
EJ1	Ттсксус	TCK Cycle Time	25		ns	_	
EJ2	Ттскнідн	TCK High Time	10	_	ns	—	
EJ3	TTCKLOW	TCK Low Time	10	_	ns	_	
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	_	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	-	ns	—	
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	-	5	ns	—	
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_	
EJ8	TTRSTLOW	TRST Low Time	25		ns		
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	_	ns	_	


Note 1: These parameters are characterized, but not tested in manufacturing.


NOTES:

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	44				
Pitch	e	0.65 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B