

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx210f016d-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to documents listed in the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

BLOCK DIAGRAM

This document contains device-specific information for PIC32MX1XX/2XX 28/36/44-pin Family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX1XX/2XX 28/36/44-pin Family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

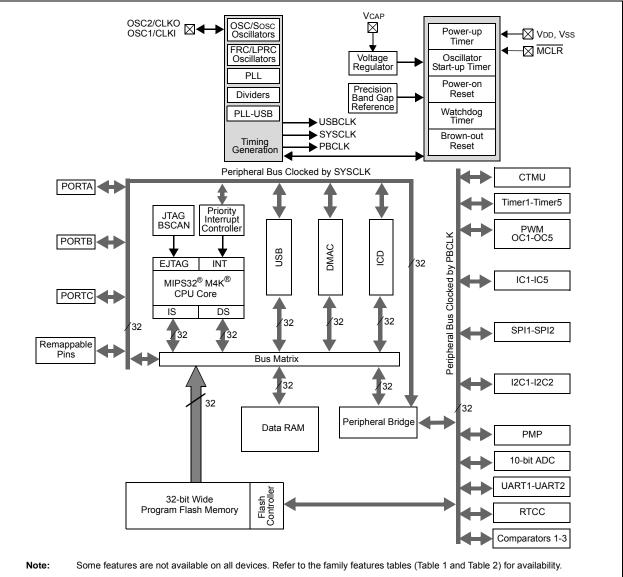


FIGURE 1-1:

		Pin Nu	mber ⁽¹⁾	-			
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
OC1	PPS	PPS	PPS	PPS	0		Output Compare Output 1
OC2	PPS	PPS	PPS	PPS	0	_	Output Compare Output 2
OC3	PPS	PPS	PPS	PPS	0	—	Output Compare Output 3
OC4	PPS	PPS	PPS	PPS	0	_	Output Compare Output 4
OC5	PPS	PPS	PPS	PPS	0	_	Output Compare Output 5
OCFA	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault A Input
OCFB	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault B Input
INT0	13	16	17	43	I	ST	External Interrupt 0
INT1	PPS	PPS	PPS	PPS	1	ST	External Interrupt 1
INT2	PPS	PPS	PPS	PPS	1	ST	External Interrupt 2
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4
RA0	27	2	33	19	I/O	ST	PORTA is a bidirectional I/O port
RA1	28	3	34	20	I/O	ST	-
RA2	6	9	7	30	I/O	ST	-
RA3	7	10	8	31	I/O	ST	-
RA4	9	12	10	34	I/O	ST	-
RA7	_			13	I/O	ST	-
RA8				32	I/O	ST	-
RA9	<u> </u>		_	35	I/O	ST	-
RA10				12	I/O	ST	-
RB0	1	4	35	21	I/O	ST	PORTB is a bidirectional I/O port
RB1	2	5	36	22	I/O	ST	
RB2	3	6	1	23	I/O	ST	-
RB3	4	7	2	24	I/O	ST	-
RB4	8	11	9	33	I/O	ST	-
RB5	11	14	15	41	I/O	ST	-
RB6	12 ⁽²⁾	15 ⁽²⁾	16 ⁽²⁾	42(2)	I/O	ST	1
RB7	13	16	17	43	I/O	ST	4
RB8	18	10	18	44	I/O	ST	4
RB9	15	18	19	1	I/O	ST	4
RB10	18	21	24	8	I/O	ST	4
RB11	10	22	25	9	I/O	ST	4
RB12	20(2)	23(2)	26 ⁽²⁾	10 ⁽²⁾	I/O	ST	4
RB13	21	24	27	11	I/O	ST	4
RB14	21	25	28	14	I/O	ST	4
RB15	23	26	29	15	1/O	ST	4
	CMOS = C	-					Analog input P = Power
Leyena.	ST = Schm TTL = TTL	itt Trigger in				O = Outp	
Note 1:		-	led for refe	rence onlv.	See the		grams" section for device pin availabilit

DINOUT I/O DESCRIPTIONS (CONTINUED)

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

		OUT I/O D Pin Nui				Í	
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
PMA0	7	10	8	3	I/O	TTL/ST	Parallel Master Port Address bit 0 input (Buffered Slave modes) and output (Master modes)
PMA1	9	12	10	2	I/O	TTL/ST	Parallel Master Port Address bit 1 input (Buffered Slave modes) and output (Master modes)
PMA2		_		27	0	—	Parallel Master Port address
PMA3		_	_	38	0	_	(Demultiplexed Master modes)
PMA4		_	_	37	0	_	7
PMA5		_	_	4	0	_	
PMA6		_	_	5	0	_	-
PMA7		_	_	13	0	_	-
PMA8		_	_	32	0	_	-
PMA9		_	_	35	0	_	-
PMA10			_	12	0		-
PMCS1	23	26	29	15	0		Parallel Master Port Chip Select 1 strob
	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾	10 ⁽²⁾	-		Parallel Master Port data (Demultiplexed
PMD0	1 ⁽³⁾	 4 ⁽³⁾	35 ⁽³⁾	21 ⁽³⁾	I/O	TTL/ST	Master mode) or address/data
	19(2)	22(2)	25(2)	<u>9</u> (2)			(Multiplexed Master modes)
PMD1	2(3)	5 ⁽³⁾	36 ⁽³⁾	22 ⁽³⁾	I/O	TTL/ST	
	18(2)	21 ⁽²⁾	24 ⁽²⁾	8 ⁽²⁾			-
PMD2	<u></u>	6 ⁽³⁾	1 ⁽³⁾	23(3)	I/O	TTL/ST	
PMD3	15	18	19	1	I/O	TTL/ST	-
PMD4	10	10	18	44	1/O	TTL/ST	-
PMD5	13	16	17	43	I/O	TTL/ST	-
PMD5 PMD6	13 12 ⁽²⁾	15 ⁽²⁾	16 ⁽²⁾	43 42 ⁽²⁾	1/0	111/31	-
FIVIDO	28(3)	3(3)	34 (3)	20(3)	I/O	TTL/ST	
PMD7	<u>11(2)</u>	14(2)	15 ⁽²⁾	41 ⁽²⁾			-
PINDI	27 ⁽³⁾	2 ⁽³⁾	33(3)	19 ⁽³⁾	I/O	TTL/ST	
PMRD	2/07	24	27	19(1)	0		Derellel Meeter Pert read stroke
PINIRD	21 22 ⁽²⁾	24 25 ⁽²⁾	27 28 ⁽²⁾	14 ⁽²⁾	0		Parallel Master Port read strobe
PMWR	<u></u> 4 ⁽³⁾	25 ⁽²⁾ 7 ⁽³⁾	28 ⁽⁻⁾ 2 ⁽³⁾	24 ⁽³⁾	0	—	Parallel Master Port write strobe
VBUS	12(3)	15 ⁽³⁾	16 ⁽³⁾	42(3)		Analog	USB bus power monitor
VBUS VUSB3V3	20(3)	23 ⁽³⁾	26 ⁽³⁾	10 ⁽³⁾	P	Analog	USB internal transceiver supply. This pin
VUSBSVS	20.7	23.7	20.7	10.7	Г	_	must be connected to VDD.
VBUSON	22 ⁽³⁾	25 ⁽³⁾	28 ⁽³⁾	14 ⁽³⁾	0	_	USB Host and OTG bus power control output
D+	18 ⁽³⁾	21 ⁽³⁾	24 ⁽³⁾	8 ⁽³⁾	I/O	Analog	USB D+
– D-	19(3)	22 ⁽³⁾	25 ⁽³⁾	9 ⁽³⁾	I/O	Analog	USB D-
Legend: C	CMOS = CI ST = Schm	MOS compa itt Trigger in input buffer	atible input	or output		Analog = O = Outp	Analog input P = Power

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

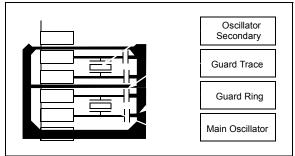
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.


Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

3.2 Architecture Overview

The MIPS32 M4K processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- · Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32 M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- · 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32 M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

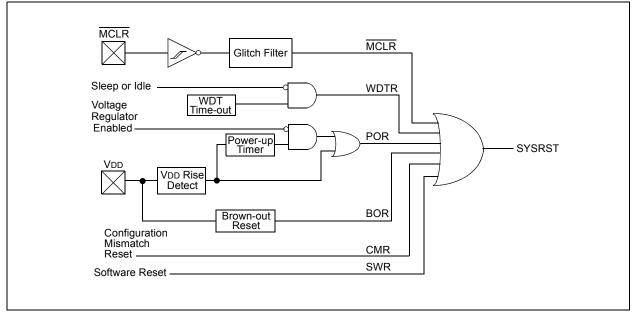
Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1:MIPS32[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGERMULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

NOTES:


6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CHSSA<31:24>											
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHSSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHSSA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHSSA	<7:0>							

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 31-0
 CHSSA<31:0> Channel Source Start Address bits

 Channel source start address.

 Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	CHDSA<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHDSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHDSA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHDSA	<7:0>							

Legend:							
R = Readable bit	W = Writable bit	table bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address.

 $\ensuremath{\textbf{Note:}}$ This must be the physical address of the destination.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess							- /				Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—	—	—	—	—	_	—		_	—	—	—	_	—	—	0000
5590	UIEF9	15:0			—	—	_	—	_	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	—	_	_			_	—	_	_	_	—	_	_	—	_	0000
53A0	UIEPIU	15:0		_	_	-	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
53BU	UIEPII	15:0	_	—	_	_			_	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEFIZ	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEF 13	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_		_		_	_		_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		_		_	_		_	_	—	_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_	—			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		—				—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—		—	-			—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	-	—	_	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPDEN			D	EVADDR<6:0	>		

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

U			
R = Readable bit	W = Writable bit	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low-Speed Enable Indicator bit

1 = Next token command to be executed at Low-Speed

0 = Next token command to be executed at Full-Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—	_	—	_	—					
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	_	—	_	—					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	—	—	-	—	_	—	-				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				FRML	<7:0>							

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:						
R = Readable bit	W = Writable bit	/ritable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

TABLE 11-2: OUTPUT PIN SELECTION

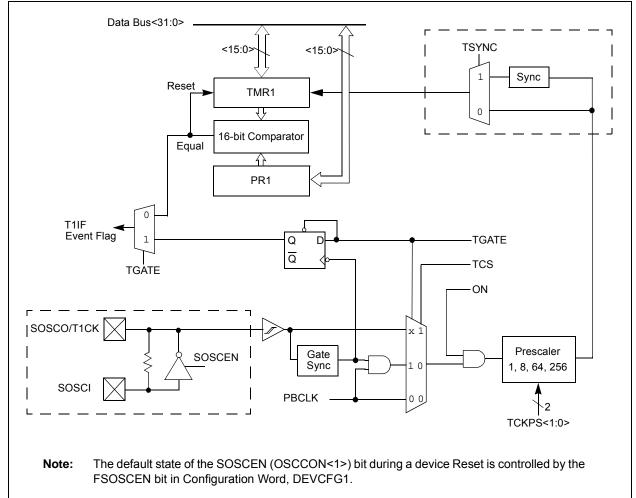
RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1
RPB15	RPB15R	RPB15R<3:0>	
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved
RPC0	RPC0R	RPC0R<3:0>	•
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved
RPA8	RPA8R	RPA8R<3:0>	
RPC8	RPC8R	RPC8R<3:0>	•
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4
RPB2	RPB2R	RPB2R<3:0>	0110 = OC5 0111 = REFCLKO
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect
RPB14	RPB14R	RPB14R<3:0>	
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3
RPB9	RPB9R	RPB9R<3:0>	
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved
RPC2	RPC2R	RPC2R<3:0>	
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

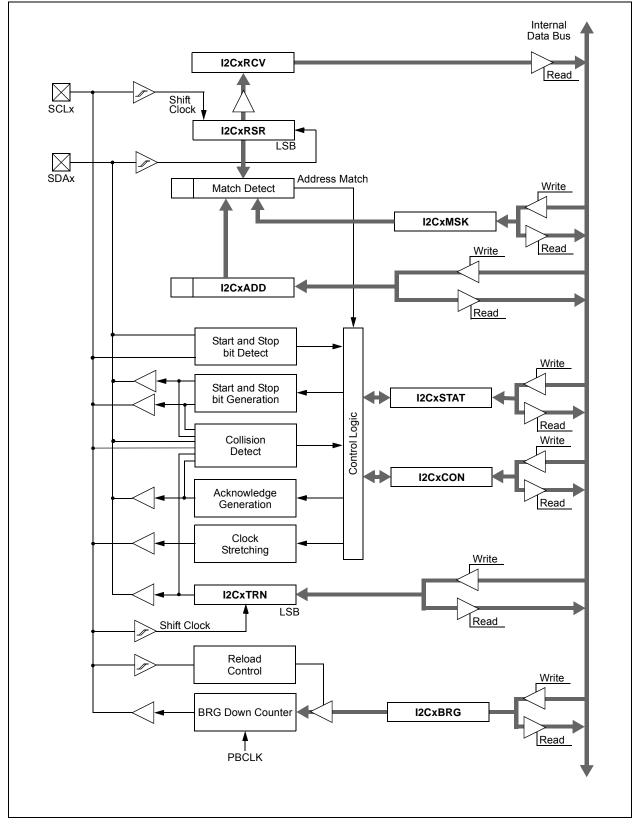
FIGURE 12-1: TIMER1 BLOCK DIAGRAM


The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)


Figure 12-1 illustrates a general block diagram of Timer1.

REGIST	ER 17-1: SPIXCON: SPI CONTROL REGISTER (CONTINUED)										
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)										
	1 = Frame synchronization pulse coincides with the first bit clock										
	0 = Frame synchronization pulse precedes the first bit clock										
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾										
	1 = Enhanced Buffer mode is enabled										
	0 = Enhanced Buffer mode is disabled										
bit 15	ON: SPI Peripheral On bit ⁽¹⁾										
	1 = SPI Peripheral is enabled										
	0 = SPI Peripheral is disabled										
bit 14	Unimplemented: Read as '0'										
bit 13	SIDL: Stop in Idle Mode bit										
	1 = Discontinue module operation when the device enters Idle mode										
	0 = Continue module operation when the device enters Idle mode										
bit 12	DISSDO: Disable SDOx pin bit										
	1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register										
	0 = SDOx pin is controlled by the module										
bit 11-10	MODE<32,16>: 32/16-Bit Communication Select bits										
	When AUDEN = 1:										
	MODE32 MODE16 Communication										
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame										
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame										
	0116-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame0016-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame										
	When AUDEN = 0:										
	MODE32 MODE16 Communication										
	1×32 -bit										
	0 1 16-bit										
	0 0 8-bit										
bit 9	SMP: SPI Data Input Sample Phase bit										
	Master mode (MSTEN = 1):										
	1 = Input data sampled at end of data output time										
	0 = Input data sampled at middle of data output time										
	<u>Slave mode (MSTEN = 0):</u> SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.										
	-										
hit 0	To write a '1' to this bit, the MSTEN value = 1 must first be written. CKE: SPI Clock Edge Select bit ⁽³⁾										
bit 8	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit)										
	0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)										
bit 7	SSEN: Slave Select Enable (Slave mode) bit										
	1 = SSx pin used for Slave mode										
	$0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.										
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾										
	1 = Idle state for clock is a high level; active state is a low level										
	0 = Idle state for clock is a low level; active state is a high level										
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.										
2:	This bit can only be written when the ON bit = 0 .										
3:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI										
5.	mode (FRMEN = 1).										
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value										
	of CKP.										

2

FIGURE 18-1: I²C BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	_	_	—	_	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	_	—	_	_	—			
45.0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
15:8	_	PTEN14	_	_	—		PTEN<10:8>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	PTEN<7:0>										

REGISTER 20-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-15 Unimplemented: Read as '0'

- bit 15-14 **PTEN14:** PMCS1 Address Port Enable bits
 - 1 = PMA14 functions as either PMA14 or PMCS1⁽¹⁾
 - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
 - 1 = PMA<10:2> function as PMP address lines
 - 0 = PMA<10:2> function as port I/O

bit 1-0 PTEN<1:0>: PMALH/PMALL Address Port Enable bits

- 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
- 0 = PMA1 and PMA0 pads functions as port I/O
- Note 1: The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

21.1 RTCC Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		ē						Bits						ŝ					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	—	_	_	-	— — CAL<9:0> 00							0000					
0200	RICCON	15:0	ON	_	SIDL	—	—	-	—	_	RTSECSEL	RTCCLKON	—	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	_		_	_	—		_		_	-	—	_	_	_	_	—	0000
0210	IN OALIN	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	K<3:0>			ARPT<7:0>						0000	
0220	RTCTIME	31:16	—	_	HR1	0<1:0>		HR01	<3:0>		—	MIN10<2:0> MIN01<3:0>				xxxx			
0220	INTO THME	15:0	—		SEC10<2:	0>		SEC07	1<3:0>		—	—	—	—	—	—	—	_	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		—	– – – MONTH10 MONTH01<3:0>				xxxx			
0230	RICDAIL	15:0	—	_	DAY	10<1:0>		DAY01	1<3:0>		—	_	—	_	—	W	/DAY01<2:0	>	xx00
0240	ALRMTIME	31:16	_		HR1	0<1:0>		HR01<3:0>			_	М	IN10<2:0>	,		MIN01	<3:0>		xxxx
0240		15:0	—		SEC10<2:	0>		SEC01<3:0>		_		—	_	—	—	_	—	xx00	
0250	ALRMDATE	31:16	—	_	_	_	_	_	_		_	-	—	MONTH10		MONTH	01<3:0>		00xx
0250		15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	_	_	_	_	W	/DAY01<2:0	>	xx0x

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 21-4. RTCDATE. RTC DATE VALUE REGISTER									
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>		
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		—	_	MONTH10	MONTH01<3:0>				
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8			DAY10)<1:0>	DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
7:0	—	_	_	_	— WDAY01<2:0>			>	
Legend:									
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'		
-n = Value	e at POR		'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is un	known	

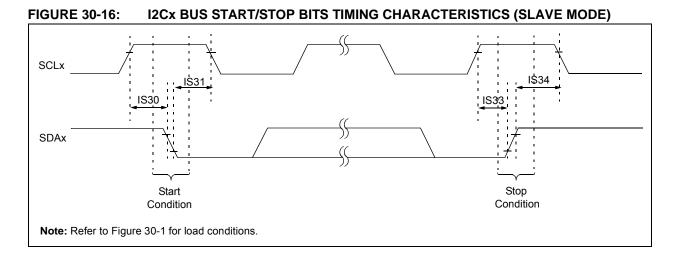
REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digit; contains a value from 0 to 9

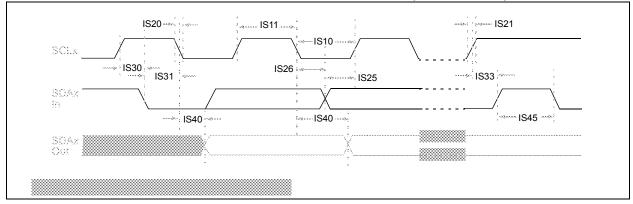
bit 27-24 **YEAR01<3:0>:** Binary-Coded Decimal Value of Years bits, 1s place digit; contains a value from 0 to 9 bit 23-21 **Unimplemented:** Read as '0'

bit 20 **MONTH10:** Binary-Coded Decimal Value of Months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

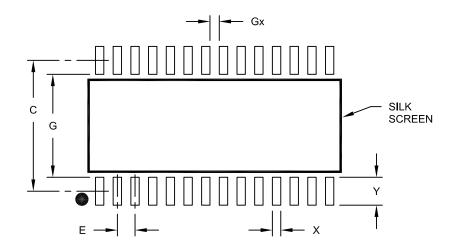

bit 13-12 DAY10<1:0>: Binary-Coded Decimal Value of Days bits, 10s place digit; contains a value of 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9


bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 WDAY01<2:0>: Binary-Coded Decimal Value of Weekdays bits; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).


TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—		
		Hold Time	400 kHz mode	600	—	ns			
			1 MHz mode (Note 1)	250		ns			
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—		
			400 kHz mode	0	1000	ns			
			1 MHz mode (Note 1)	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus		
		400 kHz mode	1.3		μS	must be free before a new			
			1 MHz mode (Note 1)	0.5	-	μS	transmission can start		
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimensio	n Limits	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	X			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A