

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx210f016d-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 10: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

			44 1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	Vdd
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4/TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4/TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVDD	39	Vss
18	MCLR	40	Vdd
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R	R	R	R	R	R	R	R				
31:24	BMXDRMSZ<31:24>											
00.40	R	R	R	R	R	R	R	R				
23:16	BMXDRMSZ<23:16>											
45.0	R	R	R	R	R	R	R	R				
15:8	BMXDRMSZ<15:8>											
7.0	R	R	R	R	R	R	R	R				
7:0				BMXDR	MSZ<7:0>							

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00001000 = Device has 4 KB RAM 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	—	_	_	—	—	—				
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	_	_	_	_	BMXPUPBA<19:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
15:8	BMXPUPBA<15:8>											
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				BMXPU	PBA<7:0>							

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits This value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

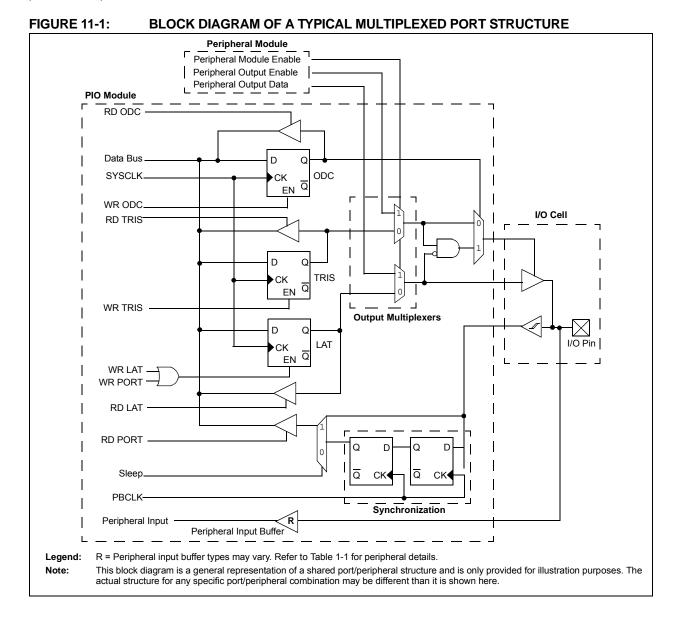
Bit Range	Bit Bit 31/23/15/7 30/22/14/				Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31.24	—	-	—	-	—	—	_	-						
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23.10	—	—	—	—	—	—	—	—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	—	-	—	-	—	—	—	-						
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS						
7:0	BTSEF	BTSEF BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF						
	DISEF	DIVIALE	DIVIALLY	BIOLE	DINOLF	GIVE IDEF	EOFEF ^(3,5)	PIDEF						

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-8 Unimplemented: Read as '0'
- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = The base address, of the Buffer Descriptor Table, or the address of an individual buffer pointed to by a Buffer Descriptor Table entry, is invalid.
 - 0 = No address error
- bit 5 DMAEF: DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out
- bit 3 **DFN8EF:** Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

11.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Key features of this module include:

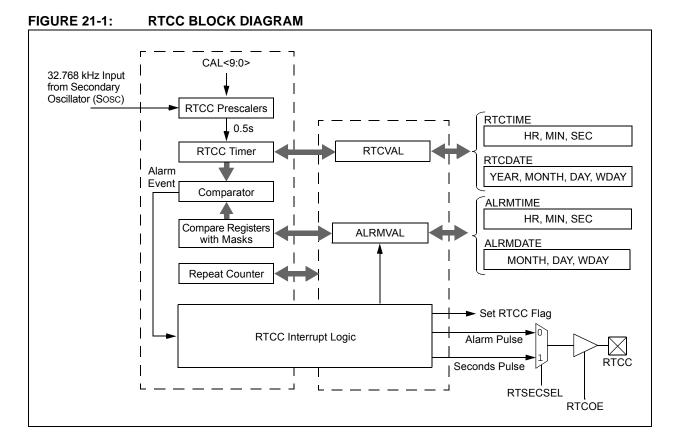
- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1
RPB15	RPB15R	RPB15R<3:0>	
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved
RPC0	RPC0R	RPC0R<3:0>	•
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved
RPA8	RPA8R	RPA8R<3:0>	
RPC8	RPC8R	RPC8R<3:0>	•
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4
RPB2	RPB2R	RPB2R<3:0>	
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect
RPB14	RPB14R	RPB14R<3:0>	
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3
RPB9	RPB9R	RPB9R<3:0>	
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved
RPC2	RPC2R	RPC2R<3:0>	
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)


- bit 5 **MSTEN:** Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- bit 4 DISSDI: Disable SDI bit
 - 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit can only be written when the ON bit = 0.
 - 3: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. Following are some of the key features of this module:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- · Provides calendar: day, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap vear correction
- · BCD format for smaller firmware overhead
- · Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

21.1 RTCC Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		ē									Bits								ŝ
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	—	_	—	—	—	—					CAL<	<9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	—	—		—	RTSECSEL	RTCCLKON	—		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—			—	—	_		—	—	_	—		—	—	_	—	0000
0210	RICALIN	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>		ARPT<7:0>					0000			
0220	RTCTIME	31:16	—	_	HR1	0<1:0>		HR01	<3:0>		—	MIN10<2:0> MIN			MIN01	l01<3:0>		xxxx	
0220		15:0	—		SEC10<2:	0>		SEC07	1<3:0>		—	—	—	_	_	_	—	—	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		—	—	—	MONTH10		MONTH	01<3:0>		xxxx
0230	RICDAIL	15:0	_	_	DAY	10<1:0>		DAY01	1<3:0>		—	—	—		_	W	/DAY01<2:0	>	xx00
0240	ALRMTIME	31:16	_		HR1	0<1:0>		HR01	<3:0>		_	М	IN10<2:0>		MIN01<3:0>				xxxx
0240		15:0	—		SEC10<2:	0>		SEC01<3:0>		—	_	—		—	—	_	—	xx00	
0250	ALRMDATE	31:16	_	_	_	_	_	_		_	—	_	—	MONTH10		MONTH	01<3:0>		00xx
0250	ALNIUATE	15:0		DAY1	0<3:0>			DAY01	<3:0>		_	_	_	-	_	W	/DAY01<2:0	>	xx0x

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 21-4. RTCDATE REGISTER												
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>					
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16		—	_	MONTH10								
15.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8			DAY10)<1:0>	DAY01<3:0>							
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
7:0	—	—	—	_	—	V	VDAY01<2:0	>				
Legend:												
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'					
-n = Value	e at POR		'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is un	known				

REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digit; contains a value from 0 to 9

bit 27-24 **YEAR01<3:0>:** Binary-Coded Decimal Value of Years bits, 1s place digit; contains a value from 0 to 9 bit 23-21 **Unimplemented:** Read as '0'

bit 20 **MONTH10:** Binary-Coded Decimal Value of Months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary-Coded Decimal Value of Days bits, 10s place digit; contains a value of 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 WDAY01<2:0>: Binary-Coded Decimal Value of Weekdays bits; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	_	_	_	—	—	_	—	—					
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
23:16		—	_	MONTH10	MONTH01<3:0>								
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
15:8		_	DAY1	0<1:0>	DAY01<3:0>								
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x					
7:0	—	_	_	_	—	V	VDAY01<2:0	>					

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

26.0 POWER-SAVING FEATURES

This section describes power-saving features for the PIC32MX1XX/2XX 28/36/44-pin Family. The PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

26.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers
- LPRC Run mode: the CPU is clocked from the LPRC clock source
- Sosc Run mode: the CPU is clocked from the Sosc clock source

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

26.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as follows:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

26.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

26.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 26.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

NOTES:

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

3: See the "Pin Diagrams" section for the 5V tolerant pins.

DC CHA	RACTERIS	TICS		ig temperature -	litions: 2.3V to 3.6V (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp			
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions				
Power-Down Current (IPD) (Notes 1, 5)								
DC40k	44	70	μA	-40°C				
DC40I	44	70	μA	+25°C	Base Power-Down Current			
DC40n	168	259	μA	+85°C				
DC40m	335	536	μA	+105°C				
Module	Differential	Current						
DC41e	5	20	μA	3.6V	3.6V Watchdog Timer Current: \(\DVDT (Note 3))			
DC42e	23	50	μA	3.6V RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)				
DC43d	1000	1100	μA	3.6V ADC: ΔΙΑDC (Notes 3,4)				

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8

• CPU is in Sleep mode, and SRAM data memory Wait states = 1

• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set

• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD

• RTCC and JTAG are disabled

2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

АС СНА	RACTERI	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		40 40	MHz MHz	EC (Note 4) ECPLL (Note 3)	
OS11		Oscillator Crystal Frequency	3	—	10	MHz	XT (Note 4)	
OS12			4	—	10	MHz	XTPLL (Notes 3,4)	
OS13			10	—	25	MHz	HS (Note 5)	
OS14			10	-	25	MHz	HSPLL (Notes 3,4)	
OS15			32	32.768	100	kHz	Sosc (Note 4)	
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	—	_	—	See parameter OS10 for Fosc value	
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc	-	—	ns	EC (Note 4)	
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	—	0.05 x Tosc	ns	EC (Note 4)	
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)	
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)	
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	—	mA/V	VDD = 3.3V, TA = +25°C (Note 4)	

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

2: Instruction cycle period (Tcr) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.

3: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing.

4: This parameter is characterized, but not tested in manufacturing.

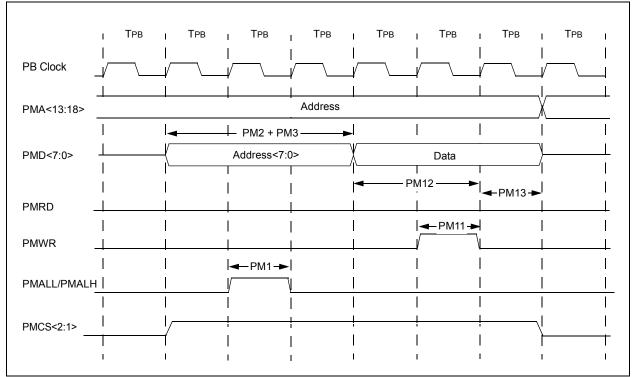
AC CHA	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No. Symbol Characteristics		Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
Clock P	arameters	S	•	•			·	
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 30-35	
Convers	sion Rate						·	
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—	
AD56	FCNV	Throughput Rate (Sampling Speed)	_	—	1000	ksps	AVDD = 3.0V to 3.6V	
			—	—	400	ksps	AVDD = 2.5V to 3.6V	
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	_	1.0 Tad		_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	—	
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_	
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	—	

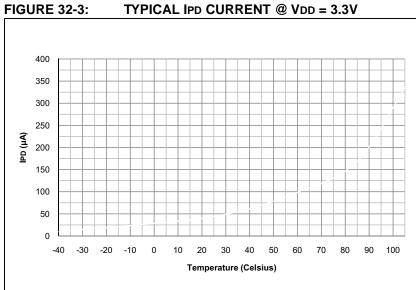
TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

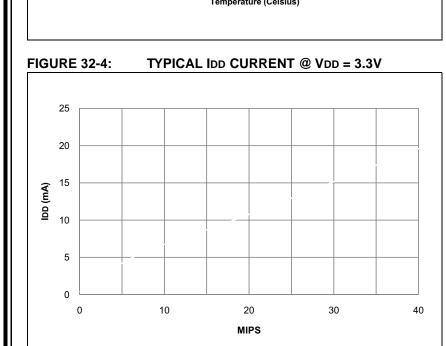
Note 1: These parameters are characterized, but not tested in manufacturing.

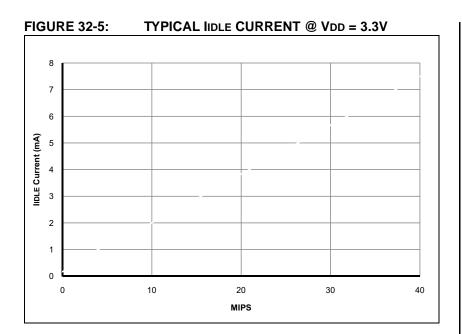
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

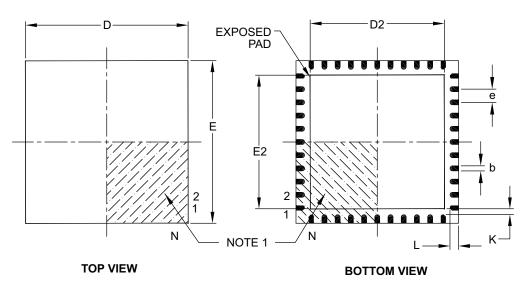
3: Characterized by design but not tested.


4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

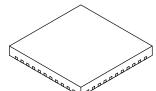

AC CHA	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. Symbol Characteristics ⁽¹⁾		Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	Tlat	PMALL/PMALH Pulse Width		1 Трв	_	_	_	
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	2 Трв	_	_	_	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	—	_	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_	
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns		


TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.







44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	44				
Pitch	e	0.65 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section	Update Description				
4.0 "Memory Organization"	Added Memory Maps for the new devices (see Figure 4-3 and Figure 4-4).				
	Removed the BMXCHEDMA bit from the Bus Matrix Register map (see Table 4-1).				
	Added the REFOTRIM register, added the DIVSWEN bit to the REFOCON registers, added Note 4 to the ULOCK and SOSCEN bits and added the PBDIVRDY bit in the OSCCON register in the in the System Control Register map (see Table 4-16).				
	Removed the ALTI2C1 and ALTI2C2 bits from the DEVCFG3 register and added Note 1 to the UPLLEN and UPLLIDIV<2:0> bits of the DEVCFG2 register in the Device Configuration Word Summary (see Table 4-17).				
	Updated Note 1 in the Device and Revision ID Summary (see Table 4-18).				
	Added Note 2 to the PORTA Register map (see Table 4-19).				
	Added the ANSB6 and ANSB12 bits to the ANSELB register in the PORTB Register map (see Table 4-20).				
	Added Notes 2 and 3 to the PORTC Register map (see Table 4-21).				
	Updated all register names in the Peripheral Pin Select Register map (see Table 4-23).				
	Added values in support of new devices (16 KB RAM and 32 KB RAM) in the Data RAM Size register (see Register 4-5).				
	Added values in support of new devices (64 KB Flash and 128 KB Flash) in the Data RAM Size register (see Register 4-5).				
8.0 "Oscillator Configuration"	Added Note 5 to the PIC32MX1XX/2XX Family Clock Diagram (see Figure 8-1).				
	Added the PBDIVRDY bit and Note 2 to the Oscillator Control register (see Register 8-1).				
	Added the DIVSWEN bit and Note 3 to the Reference Oscillator Control register (see Register 8-3).				
	Added the REFOTRIM register (see Register 8-4).				
21.0 "10-bit Analog-to-Digital	Updated the ADC1 Module Block Diagram (see Figure 21-1).				
Converter (ADC)"	Updated the Notes in the ADC Input Select register (see Register 21-4).				
24.0 "Charge Time Measurement	Updated the CTMU Block Diagram (see Figure 24-1).				
Unit (CTMU)"	Added Note 3 to the CTMU Control register (see Register 24-1)				
26.0 "Special Features"	Added Note 1 and the PGEC4/PGED4 pin pair to the ICESEL<1:0> bits in DEVCFG0: Device Configuration Word 0 (see Register 26-1).				
	Removed the ALTI2C1 and ALTI2C2 bits from the Device Configuration Word 3 register (see Register 26-4).				
	Removed 26.3.3 "Power-up Requirements".				
	Added Note 3 to the Connections for the On-Chip Regulator diagram (see Figure 26-2).				
	Updated the Block Diagram of Programming, Debugging and Trace Ports diagram (see Figure 26-3).				