

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx210f016d-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **30.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

5.1 Flash Controller Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess	Register Name	Ċ,		Bits															
Virtual Addr (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400		31:16		—	—	—	—		—	—	—	—	—	_	—	—			0000
1400		15:0	WR	WREN	WRERR	LVDERR	LVDSTAT	_	_	_	_	_	_			NVMO	P<3:0>		0000
E410		31:16		NVMKEY<31:0>												0000			
1410		15:0		01												0000			
E420		31:16		0												0000			
F420	NVINADUR' /	15:0								INVIVIADD	K~31.02								0000
E420		31:16												0000					
F430	NVINDATA	15:0								NVIVIDAL	ASJ1.02								0000
E440		31:16							N		21.05								0000
F440	NVIVISRCADDR	15:0							IN	VIVISRCAL	JUK<31:0>	•							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
31.24	NVMKEY<31:24>											
00.10	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
23:10	NVMKEY<23:16>											
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
15:8	NVMKEY<15:8>											
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0				
7:0				NVMK	EY<7:0>							

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMADDR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMADDR<23:16>											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMA	DR<7:0>							

Legend:									
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	NVMDATA<31:24>											
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMDATA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMDATA<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0				NVMD	ATA<7:0>							

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	NVMSRCADDR<31:24>											
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:10	NVMSRCADDR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	NVMSRCADDR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				NVMSRC	ADDR<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX1XX/2XX 28/36/44-pin Family interrupt module includes the following features:

- Up to 64 interrupt sources
- · Up to 44 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- · Software can generate any interrupt
- User-configurable Interrupt Vector Table (IVT) location
- User-configurable interrupt vector spacing

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Note: The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/36/44-pin Family devices.

Interrupt Source(1)	IRQ	Vector		Interru	pt Bit Location	l	Persistent
interrupt Source ^v	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
U1E – UART1 Fault	39	32	IFS1<7>	IEC1<7>	IPC8<4:2>	IPC8<1:0>	Yes
U1RX – UART1 Receive Done	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>	Yes
U1TX – UART1 Transfer Done	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1B – I2C1 Bus Collision Event	42	33	IFS1<10>	IEC1<10>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1S – I2C1 Slave Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1M – I2C1 Master Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes
CNA – PORTA Input Change Interrupt	45	34	IFS1<13>	IEC1<13>	IPC8<20:18>	IPC8<17:16>	Yes
CNB – PORTB Input Change Interrupt	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>	Yes
CNC – PORTC Input Change Interrupt	47	34	IFS1<15>	IEC1<15>	IPC8<20:18>	IPC8<17:16>	Yes
PMP – Parallel Master Port	48	35	IFS1<16>	IEC1<16>	IPC8<28:26>	IPC8<25:24>	Yes
PMPE – Parallel Master Port Error	49	35	IFS1<17>	IEC1<17>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2E – SPI2 Fault	50	36	IFS1<18>	IEC1<18>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2RX – SPI2 Receive Done	51	36	IFS1<19>	IEC1<19>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2TX – SPI2 Transfer Done	52	36	IFS1<20>	IEC1<20>	IPC9<4:2>	IPC9<1:0>	Yes
U2E – UART2 Error	53	37	IFS1<21>	IEC1<21>	IPC9<12:10>	IPC9<9:8>	Yes
U2RX – UART2 Receiver	54	37	IFS1<22>	IEC1<22>	IPC9<12:10>	IPC9<9:8>	Yes
U2TX – UART2 Transmitter	55	37	IFS1<23>	IEC1<23>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2B – I2C2 Bus Collision Event	56	38	IFS1<24>	IEC1<24>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2S – I2C2 Slave Event	57	38	IFS1<25>	IEC1<25>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2M – I2C2 Master Event	58	38	IFS1<26>	IEC1<26>	IPC9<20:18>	IPC9<17:16>	Yes
CTMU – CTMU Event	59	39	IFS1<27>	IEC1<27>	IPC9<28:26>	IPC9<25:24>	Yes
DMA0 – DMA Channel 0	60	40	IFS1<28>	IEC1<28>	IPC10<4:2>	IPC10<1:0>	No
DMA1 – DMA Channel 1	61	41	IFS1<29>	IEC1<29>	IPC10<12:10>	IPC10<9:8>	No
DMA2 – DMA Channel 2	62	42	IFS1<30>	IEC1<30>	IPC10<20:18>	IPC10<17:16>	No
DMA3 – DMA Channel 3	63	43	IFS1<31>	IEC1<31>	IPC10<28:26>	IPC10<25:24>	No
		Lowes	st Natural O	rder Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	R/W-y	R/W-y	R/W-y	R/W-0	R/W-0	R/W-1				
31:24	—	—	P	LLODIV<2:0	>	FRCDIV<2:0>						
00.40	U-0	R-0	R-1 R/W-y I		R/W-y	R/W-y	R/W-y	R/W-y				
23:10	—	SOSCRDY	PBDIVRDY	PBDI\	/<1:0>	PLLMULT<2:0>						
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
15:8	—		COSC<2:0>		—	NOSC<2:0>						
7.0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0 R/W-y		R/W-0				
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN				

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	nd: y = Value set from Configuration bits on POR										
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'									
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown								

bit 31-30 **Unimplemented:** Read as '0'

bit 29-27 **PLLODIV<2:0>:** Output Divider for PLL

- 111 = PLL output divided by 256
- 110 = PLL output divided by 64
- 101 = PLL output divided by 32
- 100 = PLL output divided by 16
- 011 = PLL output divided by 8
- 010 = PLL output divided by 4
- 001 = PLL output divided by 2
- 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = The Secondary Oscillator is running and is stable
 - 0 = The Secondary Oscillator is still warming up or is turned off
- bit 21 **PBDIVRDY:** Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1

Note 1: This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0						
23:10	—	—	—	—	—	—	—	_
45.0	U-0	U-0						
15:8	—			—	—	—	—	-
	R/W-0	R/W-0						
7:0	BTSEE	BMYEE		BTOEE			CRC5EE ⁽¹⁾	DIDEE
	DIGLE	DIVIALL	DIVIALL	DIOLL	DINOLL	ONCIDEL	EOFEE ⁽²⁾	

REGISTER 10-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit 1 = BTSEF interrupt is enabled 0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled0 = BTOEF interrupt is disabled
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit
	1 = DFN8EF interrupt is enabled
	0 = DFN8EF interrupt is disabled

- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate the USBIF register, the UERRIE (U1IE<1>) bit must be set.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	-	—
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
	UTEYE	UOEMON	—	USBSIDL	—	—	—	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB OE Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
 0 = OE signal is inactive

bit 5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock.

TABL	.E 11-6:	PEF	RIPHER	AL PIN	SELEC		I REGI	SIERM			:D)								
ss										В	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		_		_	—		—		—		_	—	—	—	—	0000
FA94	UICISK	15:0	_		_	_	—	—	_	—	—	—		_		U1CTS	R<3:0>		0000
		31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FADO	UZRAR	15:0	_		_	_	—	—	_	—	—	—		_		U2RXI	R<3:0>		0000
EAEC	LIDOTOD	31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FASC	UZCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U2CTS	R<3:0>		0000
EV01	SD11D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA04	SDIK	15:0	_	—	_	—	—	—	—	—	_	—	_	—		SDI1F	R<3:0>		0000
EV 00	881D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA00	33 IK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SS1R	<3:0>		0000
EAOO	20120	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA90	SDIZK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SDI2F	R<3:0>		0000
EA04	660D	31:16	_		_	_	—	—	_	—	—	—		_	—	—		—	0000
FA94	FA94 SS2R		_	_	_	_	_	_	_	_	_	_	_	_	SS2R<3:0>				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FADO	FAB8 REFCLKIR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		REFCL	(IR<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

sss										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	DD00D(1)	31:16	_	—	—	_	—	—	—	—	_	_	—	_	—	—	—	_	0000
FB8C	RPCOR	15:0	—	—	—	_	—	—	—	—	_	_	_	_		RPC8	<3:0>		0000
5000	DD0000(3)	31:16	—	_	_	_	_	_	—	_	—	—	_	—	_	_	—	_	0000
FB90	KPC9R ^{ey}	15:0	—	_	_	_	_	_	—	_	_	_	_	_		RPC	<3:0>		0000

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

2:

This register is only available on 44-pin devices. This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices. 3:

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	-	—	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	—	—	—	—
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	—	-	—	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit				

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2Cx	TRN register failed because the I ² C module is busy
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

- bit 6 I2COV: Receive Overflow Flag bit
 - 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

19.1 UART Control Registers

TABLE 19-1: UART1 AND UART2 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000		31:16			—	—	—			—		_					—		0000
0000	OTWODE	15:0	ON	_	SIDL	IREN	RTSMD	-	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6010	111STA(1)	31:16	-	—	—	—	—	-	_	ADM_EN				ADDF	R<7:0>				0000
0010	UIUIA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020		31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0020	UTIXILO	15:0	-	—	—	—	—	-	_				Tra	insmit Regi	ster				0000
6030		31:16		_	—	_	_		_	_		_			_	_	_	_	0000
6030	UIIVILO	15:0	-	—	—	—	—	-	_				Re	ceive Regis	ster				0000
6040		31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0040	OTBICO	15:0							Bau	d Rate Gen	erator Pres	caler					-		0000
6200	112MODE(1)	31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0200	02INIODE.	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6210	112STA(1)	31:16	_	—				_	—	ADM_EN				ADDF	R<7:0>		-		0000
0210	02017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	LI2TXREG	31:16	_	—	—			_	—	—	_	—	—	_	—	—	—	—	0000
0220	02TAILO	15:0	_		_	_	_	_	_				Tra	insmit Regi	ster				0000
6230		31:16	-	—	—	—	—	-	_	_	-	—	-	-	—	—	—	—	0000
0230	OZIVAREO	15:0	_		_	_	_	_	_				Re	ceive Regis	ster				0000
6240	U2BRG(1)	31:16	_	—	—			—	—	—	_	—	—	_	—	—		—	0000
52-70	OZDINO.	15:0							Bau	d Rate Gen	erator Pres	caler							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	_		
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	_	CS1 ⁽¹⁾ ADDR14 ⁽²⁾	_	—	—	ADDR<10:8>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	ADDR<7:0>									

REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

- 3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-15 **Unimplemented:** Read as '0'
- bit 14 **CS1:** Chip Select 1 bit⁽¹⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽²⁾
- bit 13-11 Unimplemented: Read as '0'
- bit 10-0 ADDR<10:0>: Destination Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R	R	R	R	R	R	R	R			
31:24		VER<	3:0> (1)			DEVID<27:24> ⁽¹⁾					
00.40	R	R	R	R	R	R	R	R			
23:10	DEVID<23:16> ⁽¹⁾										
45.0	R	R	R	R	R	R	R	R			
15:8	DEVID<15:8> ⁽¹⁾										
7:0	R	R	R	R	R	R	R	R			
				DEVID	<7:0>(1)						

REGISTER 27-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID bits⁽¹⁾

Note 1: See the "*PIC32 Flash Programming Specification*" (DS60001145) for a list of Revision and Device ID values.

NOTES:

DC CHA	RACTERIS	TICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions						
Power-Down Current (IPD) (Notes 1, 5)										
DC40k	44	70	μA	-40°C						
DC40I	44	70	μA	+25°C	Pasa Power Down Current					
DC40n	168	259	μA	+85°C	Base Fower-Down Guiteni					
DC40m	335	536	μA	+105°C						
Module	Module Differential Current									
DC41e	5	20	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)					
DC42e	23	50	μA	3.6V RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)						
DC43d	1000	1100	μA	3.6V ADC: ΔΙΑDC (Notes 3,4)						

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8

• CPU is in Sleep mode, and SRAM data memory Wait states = 1

• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set

• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD

• RTCC and JTAG are disabled

2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No. Symbol Characteristics ⁽¹			cs ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes
OS51	Fsys	On-Chip VCO System Frequency		60	_	120	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	—	2	ms	—
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25		+0.25	%	Measured over 100 ms period

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 30-19: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾									
F20b	FRC	-0.9	_	+0.9	%	_			

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions		
LPRC @ 31.25 kHz ⁽¹⁾								
F21	LPRC	-15	_	+15	%			

Note 1: Change of LPRC frequency as VDD changes.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A