

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betans	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx210f016dt-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

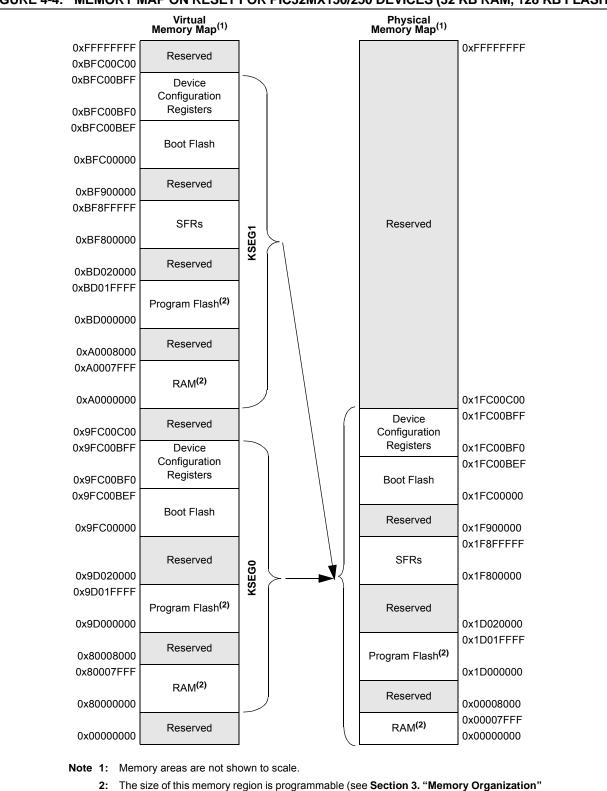
Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

TABLE 3-3: MIPS32[®] M4K[®] PROCESSOR CORE EXCEPTION TYPES

3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.


3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX150/250 DEVICES (32 KB RAM, 128 KB FLASH)

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*") and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

6.1 Reset Control Registers

TABLE 6-1: RESET CONTROL REGISTER MAP

ess		0	Bits											s					
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F600	RCON	31:16	_	_	_		—	_		—	_	_		_		-	-	_	0000
1 000	ROOM	15:0	_		-		_	-	CMR	VREGS	EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR	xxxx(2)
E610	RSWRST	31:16		—	-	—	—	—	—	—		—	—	_	—	_	—	—	0000
1010	N31/K31	15:0	_	_	_	-	_	_		—	_	_	-	_	_	_	-	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	_	_		_	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_		_	_	_	—	—		
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	—	_	—	MVEC	_	TPC<2:0>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP		

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Legend:

Logona.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-13 Unimplemented: Read as '0'

- bit 12 MVEC: Multi Vector Configuration bit
 - 1 = Interrupt controller configured for Multi-vectored mode
 - 0 = Interrupt controller configured for Single-vectored mode
- bit 11 Unimplemented: Read as '0'
- bit 10-8 **TPC<2:0>:** Interrupt Proximity Timer Control bits
 - 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
 - 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer
 - 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
 - 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer
 - 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
 - 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer
 - 001 = Interrupts of group priority 1 start the Interrupt Proximity timer
 - 000 = Disables Interrupt Proximity timer

bit 7-5 Unimplemented: Read as '0'

- bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	ROTRIM<8:1>											
00.40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	ROTRIM<0>	_	_	_	—	_	—	—				
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	_	_	_	—	_	—	—				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0	_	_	_	_	—	_	_	—				

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON (REFOCON<15>) bit is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	_	—	—	_	_	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	_	—	—	—	_	—			
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0			
15:8	ON ⁽¹⁾	—	_	SUSPEND	DMABUSY	_	_	—			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	_	_	_	_	_	_	_	_			

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	—				_	—
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—			-	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	-	—	—	—	—	-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U1OTGCON: USB OTG CONTROL REGISTER

Legend:

Logona						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7	DPPUL	UP: D)+ Pull-U	p Enable	bit	

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- It 6 DIVIPOLOP: D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D + data line pull-down resistor is disabled
- bit 4 **DMPULDWN:** D- Pull-Down Enable bit
 - 1 = D- data line pull-down resistor is enabled
 - 0 = D- data line pull-down resistor is disabled
- bit 3 VBUSON: VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
- bit 1 VBUSCHG: VBUS Charge Enable bit
 - 1 = VBUS line is charged through a pull-up resistor
 - 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

TABL	E 11-7:	PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)																	
SS										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB4C	RPB8R	31:16	_	-	—	-	_	-	_	_	-	—	_	—	_	_	_	—	0000
1040	IN DOIX	15:0	_		—		—		_	—			—	—		RPB8	<3:0>		0000
FB50	RPB9R	31:16	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	0000
1 830	KF D9K	15:0	—	_	—	_	—	—	-		—	—	—	—		RPB9	<3:0>		0000
FB54	RPB10R	31:16	—	_	—	_	—	—	-		—	—	—	—	-	_	—	—	0000
FB34	REDIUR	15:0	—	—	_	—	—	_			—	—	—	—		RPB1	0<3:0>		0000
FB58	RPB11R	31:16	—	—	_	—	—	_			—	—	—	—			_	—	0000
FB30	RPBIIR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	1<3:0>		0000
FB60	RPB13R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB00	RPBISR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	3<3:0>		0000
FB64	RPB14R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB04		15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	4<3:0>		0000
FB68	RPB15R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB00	RPBIOR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	5<3:0>		0000
FB6C	RPC0R ⁽³⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FBOC	RECOR	15:0	—	—	—	—	—	—	-		—	—	-	—		RPCC	<3:0>		0000
FB70	RPC1R ⁽³⁾	31:16	—	—	_	—	—	_			—	—	—	—			_	—	0000
FB/U	RPUIK	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC1	<3:0>		0000
FB74	RPC2R ⁽¹⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/4	RP62R ^V	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC2	<3:0>		0000
FB78	RPC3R ⁽³⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/0	RPGSR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC3	<3:0>		0000
FB7C	RPC4R ⁽¹⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/C	RPC4R ^V	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC4	<3:0>		0000
FB80	RPC5R ⁽¹⁾	31:16		—	—	—	—	—	_		—	_	—	—	_	_	—	_	0000
FB80	RPUSK"	15:0					—	_	_	_	_		—	—		RPC5	i<3:0>		0000
FB84	RPC6R ⁽¹⁾	31:16					—	_	_	_	_		—	—	_	—		—	0000
FB04	RPU0K"	15:0					—	_	_	_	_		—	—		RPC	<3:0>		0000
ED00		31:16		—		—	—	—	_		—		—	—	_	_	—		0000
F B 08	B88 RPC7R ⁽¹⁾	15:0	_	_	—	_	_	—	—	_	—		_	_		RPC7	<3:0>		0000

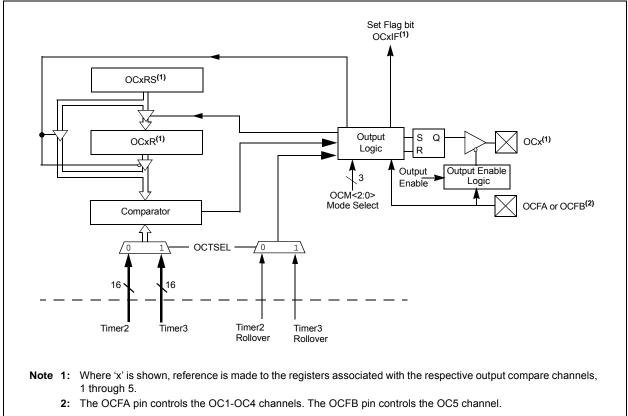
OT AUTOUT DEALATED MAD

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: 3:

This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices.


16.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features:

- · Multiple Output Compare Modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

REGISTE	R 18-1:	I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	GCEN: Ge	eneral Call Enable bit (when operating as I ² C slave)
	(module	interrupt when a general call address is received in the I2CxRSR e is enabled for reception)
		al call address is disabled
bit 6	STREN: S	CLx Clock Stretch Enable bit (when operating as I ² C slave)
		njunction with SCLREL bit.
		e software or receive clock stretching
L:1 F		e software or receive clock stretching
bit 5		cknowledge Data bit (when operating as I ² C master, applicable during master receive) is transmitted when the software initiates an Acknowledge sequence.
		a NACK during an Acknowledge sequence
		an ACK during an Acknowledge sequence
bit 4	ACKEN: A receive)	cknowledge Sequence Enable bit (when operating as I ² C master, applicable during master
	Hardwa	Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. are clear at end of master Acknowledge sequence. wledge sequence not in progress
bit 3	RCEN: Re	ceive Enable bit (when operating as I ² C master)
		es Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. The sequence not in progress
bit 2	PEN: Stop	Condition Enable bit (when operating as I ² C master)
		Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. ondition not in progress
bit 1	RSEN: Re	peated Start Condition Enable bit (when operating as I ² C master)
		Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of Repeated Start sequence.
	0 = Repeat	ted Start condition not in progress
bit 0		Condition Enable bit (when operating as I ² C master)
		Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. ondition not in progress

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character) bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is Idle 0 = Data is being received PERR: Parity Error Status bit (read-only) bit 3 1 = Parity error has been detected for the current character 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected **OERR:** Receive Buffer Overrun Error Status bit. bit 1 This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and the RSR to an empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)

- 1 = Receive buffer has data, at least one more character can be read
- 0 = Receive buffer is empty

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	—	_	-	_			-	_	—	—	—			—	—	_	0000
7000	FINCON	15:0	ON	_	SIDL	ADRML	IX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF∙	<1:0>	ALP		CS1P	_	WRSP	RDSP	0000
7010	PMMODE	31:16	—	_	-	_	_		_	_	—	_	—		-	_	—	_	0000
7010	FININODE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	—	MODE	<1:0>	WAITE	3<1:0>		WAITM	/<3:0>		WAITE	<1:0>	0000
		31:16	_	—	_	_	—	—	—	_	_	_	_	—	—	_	_	—	0000
7020	PMADDR	15:0	_	CS1 ADDR14	_	_	_					/	ADDR<10:0	>					0000
7030	PMDOUT	31:16 15:0								DATAOU	T<31:0>								0000
7040	PMDIN	31:16 15:0		DATAIN<31:0>															
7050		31:16	_	_		_	-		-	_	_	_	—			_	_		0000
7050	PMAEN	15:0	_	- PTEN14 PTEN<10:0> 000							0000								
7060	PMSTAT	31:16				_			_	_			—	_	_		—	_	0000
1000	FINISTAT	15:0	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	—	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHA	RACTERI	STICS	(unless ot	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristi	cs ⁽¹⁾	Min.	Typical	Max.	Units	Conditions			
OS50	Fplli	PLL Voltage Control Oscillator (VCO) Inp Frequency Range		3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes			
OS51	Fsys	On-Chip VCO Syste Frequency	m	60	—	120	MHz	_			
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	_	2	ms	—			
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cum	-0.25	—	+0.25	%	Measured over 100 ms period				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

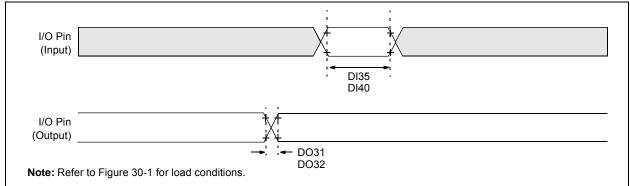
For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 30-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	(unless	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions				
Internal	Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾									
F20b	FRC	-0.9		+0.9	%	_				

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.


TABLE 30-20: INTERNAL LPRC ACCURACY

АС СНА	RACTERISTICS	(unless	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions				
LPRC @	LPRC @ 31.25 kHz ⁽¹⁾									
F21	21 LPRC		—	+15	%	_				

Note 1: Change of LPRC frequency as VDD changes.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-3: I/O TIMING CHARACTERISTICS

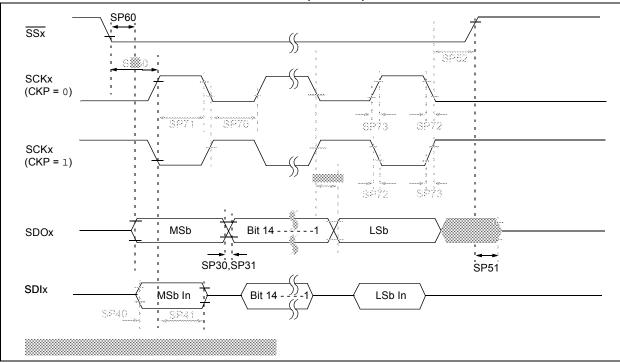


TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAP	RACTERIS	STICS	(unless other	Standard Operating Conditions: 2.3V to 3.6Vunless otherwise stated)Dperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
DO31	TIOR	Port Output Rise Tir	ne		5	15	ns	Vdd < 2.5V			
					5	10	ns	Vdd > 2.5V			
DO32	TIOF	Port Output Fall Tim	е	_	5	15	ns	Vdd < 2.5V			
					5	10	ns	VDD > 2.5V			
DI35	Tinp	NTx Pin High or Low Time		10	_	_	ns	_			
DI40	Trbp	CNx High or Low Tir	2	_		TSYSCLK					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 30-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS	$\begin{array}{c} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	_	_	ns	—			
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—			
SP72	TscF	SCKx Input Fall Time	_	5	10	ns	—			
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after		_	20	ns	VDD > 2.7V			
	TscL2DoV	SCKx Edge	_	—	30	ns	VDD < 2.7V			
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—			
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—		ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

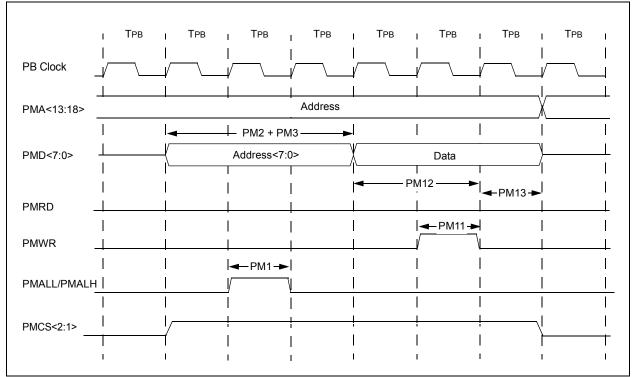
- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA		ISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions				
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μs	—				
			400 kHz mode	Трв * (BRG + 2)	_	μS	—				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μs	_				
IM11	THI:SCL	Clock High Time			_	μS	—				
			400 kHz mode	Трв * (BRG + 2)	_	μs	—				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	—				
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be				
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF				
			1 MHz mode (Note 2)	_	100	ns					
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be				
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF				
			1 MHz mode (Note 2)	_	300	ns					
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—				
		Setup Time	400 kHz mode	100	—	ns					
			1 MHz mode (Note 2)	100	_	ns					
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	—				
		Hold Time	400 kHz mode	0	0.9	μs					
			1 MHz mode (Note 2)	0	0.3	μs					
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	_	μS	Only relevant for				
		Setup Time	400 kHz mode	Трв * (BRG + 2)	—	μS	Repeated Start condition				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	condition				
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	After this period, the				
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	μs	first clock pulse is generated				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS	generaleu				
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)		μS					
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μs					
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs					
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—				
		Hold Time	400 kHz mode	Трв * (BRG + 2)		ns]				
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	ns					

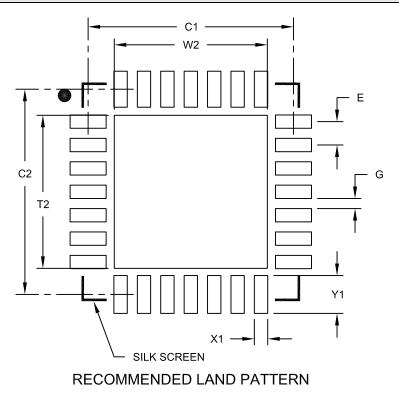
Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


3: The typical value for this parameter is 104 ns.

AC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PM1	Tlat	PMALL/PMALH Pulse Width		1 Трв	_	_	_			
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	2 Трв	_	_	_			
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	—	_			
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_			
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—			
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_			
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns				

TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS


Note 1: These parameters are characterized, but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensi	MIN	NOM	MAX		
Contact Pitch	Е		0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

Revision D (February 2012)

All occurrences of VUSB were changed to: VUSB3V3. In addition, text and formatting changes were incorporated throughout the document.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 128	Corrected a part number error in all pin diagrams.
KB Flash and 32 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog"	Updated the DMA Channels (Programmable/Dedicated) column in the PIC32MX1XX General Purpose Family Features (see Table 1).
1.0 "Device Overview"	Added the TQFP and VTLA packages to the 44-pin column heading and updated the pin numbers for the SCL1, SCL2, SDA1, and SDA2 pins in the Pinout I/O Descriptions (see Table 1-1).
7.0 "Interrupt Controller"	Updated the Note that follows the features.
	Updated the Interrupt Controller Block Diagram (see Figure 7-1).
29.0 "Electrical Characteristics"	Updated the Maximum values for parameters DC20-DC24, and the Minimum value for parameter DC21 in the Operating Current (IDD) DC Characteristics (see Table 29-5).
	Updated all Minimum and Maximum values for the Idle Current (IIDLE) DC Characteristics (see Table 29-6).
	Updated the Maximum values for parameters DC40k, DC40l, DC40n, and DC40m in the Power-down Current (IPD) DC Characteristics (see Table 29-7).
	Changed the minimum clock period for SCKx from 40 ns to 50 ns in Note 3 of the SPIx Master and Slave Mode Timing Requirements (see Table 29-26 through Table 29-29).
30.0 "DC and AC Device Characteristics Graphs"	Updated the Typical IIDLE Current @ VDD = 3.3V graph (see Figure 30-5).