

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx220f032b-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit Bit 30/22/14/6 29/21/13/5		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	—	—	—		—	—				
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16	_	—	_	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	—	—	—	-	—	_		—				
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1				
7:0	_	BMX WSDRM	_	_	_	E	3MXARB<2:0	>				

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

5		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-21 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 20	BMXERRIXI: Enable Bus Error from IXI bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18	BMXERRDMA: Bus Error from DMA bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17	BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16	BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7	Unimplemented: Read as '0'
bit 6	BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
	 1 = Data RAM accesses from CPU have one wait state for address setup 0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3	Unimplemented: Read as '0'
bit 2-0	BMXARB<2:0>: Bus Matrix Arbitration Mode bits
	111 = Reserved (using these Configuration modes will produce undefined behavior)
	•
	•
	011 = Reserved (using these Configuration modes will produce undefined behavior)010 = Arbitration Mode 2
	001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	DCRCDATA<31:24>											
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	DCRCDATA<23:16>											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	DCRCDATA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				DCRCDA	TA<7:0>							

REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	DCRCXOR<31:24>											
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	DCRCXOR<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	DCRCXOR<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				DCRCXO	R<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess		0									Bi	ts							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5280	U1FRML ⁽³⁾	31:16	_	—	—	—	_	_	_	_	_	—	_	—	_	_	_	—	0000
5200		15:0	_	—	_	_	—	_	—	_				FRML<	7:0>				0000
5290	U1FRMH ⁽³⁾	31:16	_	—	—	—		—	—	_		—		—	—	—	_	—	0000
52.50	OTTRAIT	15:0	_	—	—	—	—	—	—			—		_	—		FRMH<2:0>	>	0000
52A0	U1TOK	31:16	_	—	—	—		—	—	_		—	_	_	—	—	_	—	0000
5270	UTTOR	15:0	_	—	—	—	—	—	—			PID	<3:0>			EP	<3:0>	-	0000
52B0	U1SOF	31:16	—	—			—			_	_	—	—	—	—	—	—	—	0000
5260	0130F	15:0	—			_	_		_					CNT<7	/:0>		-	•	0000
52C0	U1BDTP2	31:16	_	—		_			_	_	_	—	_	—	—	_	_	—	0000
5200	OIBDIF2	15:0	_	—		_			_	_				BDTPTR	H<7:0>				0000
52D0	U1BDTP3	31:16	_	—	—	—	—	—	—	_	_	—	_	_	—	—	—	—	0000
5200	OIBDIF3	15:0	_	—		_			_	_				BDTPTRI	J<7:0>				0000
52E0	52E0 U1CNFG1 3	31:16	_	—	—	—	—	—	—	_	_	—	_	_	—	—	—	—	0000
5210	UTCNI UT	15:0	_	_	—	—	—	—	—	_	UTEYE	UOEMON		USBSIDL	—	—	_	UASUSPND	0001
5300	U1EP0	31:16	_	_	—	—	—	—	—	_		—		_	—	—	_	—	0000
5500	UIEI U	15:0	_	_	—	—	—	—	—	_	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5310	U1EP1	31:16	_	_	—	—	—	—	—	_		—		_	—	—	_	—	0000
5510	UIEI I	15:0	_	_	—	—	—	—	—	_		—		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5320	U1EP2	31:16	—	—	_	_	—	_	—	_	—	—	—	_	—	_	—	—	0000
0020	OTET 2	15:0	_	—		—	—		—	—		—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5330	U1EP3	31:16	_	—		—	—	—	—			—	_	_	—	—		—	0000
0000	UTER 0	15:0	_	—		—	—		—	—		—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5340	U1EP4	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—		—	0000
0010	01EFT	15:0	—	—	—	—	—		—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5350	U1EP5	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
0000	01EI 0	15:0	—	—	—	—	—		—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5360	U1EP6	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
0000	0.2.0	15:0	_	_	_	_					_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5370	U1EP7	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—		—	0000
3070	01217	15:0	—	—	—	—	—	—	—	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5380	U1EP8	31:16	_	—	—	—			—	_	_	—	_	_	—	—	—	—	0000
5500	UILI U	15:0	—	-	_	_	—	_	_	_	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit Bit 30/22/14/6 29/21/13/		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	-	—	-	—	—	_	-			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	-	—	-	—	—	-	-			
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS			
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF			
	DISEF	DIVIALE	DIVIALLY	BIVEF	DINOLF	GIVE IDEF	EOFEF ^(3,5)				

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-8 Unimplemented: Read as '0'
- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = The base address, of the Buffer Descriptor Table, or the address of an individual buffer pointed to by a Buffer Descriptor Table entry, is invalid.
 - 0 = No address error
- bit 5 DMAEF: DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out
- bit 3 **DFN8EF:** Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	-	—	—	—	—	—			
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	-	—	—	—	—	—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.0	—	—	-	—	—	—	—	—			
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
7:0	—	—	_	—	—		FRMH<2:0>				

REGISTER 10-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Bit Bit Bit Bit Bit Bit Bit Bit 30/22/14/6 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 Range 31/23/15/7 29/21/13/5 28/20/12/4 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 31:24 ___ ___ ____ ____ ____ ____ ___ ____ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 23:16 ____ ___ ____ ____ ____ ____ ____ ___ U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 15:8 _ ___ ____ ____ ____ ___ ____ ____ R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7:0 PID < 3:0 > (1)EP<3:0>

REGISTER 10-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

1101 = SETUP (TX) token type transaction

- 1001 = IN (RX) token type transaction
- 0001 = OUT (TX) token type transaction

Note: All other values are reserved and must not be used.

bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

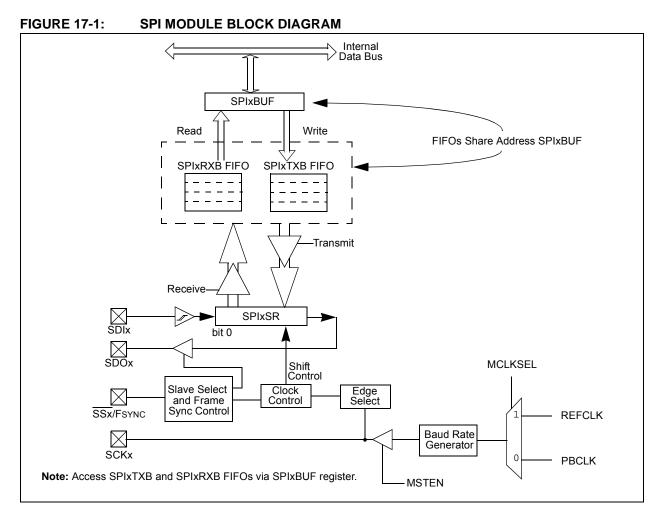
Note 1: All other values are reserved and must not be used.

TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

ssa										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FA04	INT1R	31:16		_			_	_				_				_	_		0000
FA04		15:0	—	—	—	—	—	—	—	—	—	—	—	—		INT1F	R<3:0>		0000
FA08	INT2R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	0000
FAUO	INTZR	15:0	—	—	—	—	—	—	—	—	—	—	—	—		INT2F	R<3:0>		0000
FA0C	INT3R	31:16	_	_	_	_	—	—	_	_	—	_		—	_		—	—	0000
FAUC	IN I 3R	15:0		_	_	_	_	_	_	_	_	_	_	_		INT3F	R<3:0>		0000
5440		31:16		_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	0000
FA10	INT4R	15:0	-	_	_	_	-	-	_	_	_	_	_	_		INT4F	R<3:0>		0000
5440	TAOKA	31:16	_	_	_	_	—	—	_	_	_	_	_	_	_	_	_	—	0000
FA18	T2CKR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		T2CK	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_		_	_		_	_	0000
FA1C	T3CKR	15:0	_	_	_	_	_	_	_	_	_	_		_		T3CK	R<3:0>	•	0000
		31:16	_	_	_	_	_	_	_	_	_	_		_	_		_	_	0000
FA20	T4CKR	15:0	_		_		_	_	_	_	_			_		T4CK	R<3:0>	•	0000
		31:16	_		_		_	_	_	_	_			_	_		_	_	0000
FA24	T5CKR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		T5CK	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_		—	_	0000
FA28	IC1R	15:0	_	_	_		_	_	_	_	_	_	_	_		IC1R	<3:0>		0000
		31:16	_		_	_	_	_	_	_	_		_		_	_	_	_	0000
FA2C	IC2R	15:0	_		_	_	_	_	_	_	_		_			IC2R	<3:0>		0000
		31:16	_	_	_		_	_	_	_	_	_	_	_		_	_	_	0000
FA30	IC3R	15:0	_	_	_		_	_	_	_	_	_	_	_		IC3R	<3:0>		0000
		31:16	_		_	_	_	_	_	_	_		_		_	_	_	_	0000
FA34	IC4R	15:0	_		_	_	_	_	_	_	_		_			IC4R	<3:0>		0000
		31:16	_		_	_	_	_	_	_	_		_		_	_	_	_	0000
FA38	IC5R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		IC5R	<3:0>		0000
		31:16	_	_			_	_		_	_	_	_	_		_		_	0000
FA48	OCFAR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		OCFA	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FA4C	OCFBR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		OCFB	R<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FA50	U1RXR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		U1RX	R<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)


- bit 3 Unimplemented: Read as '0'
 bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.
 bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontrollers. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- Master mode and Slave mode support
- Four clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

21.1 RTCC Control Registers

TABLE 21-1: RTCC REGISTER MAP

ess		ē									Bits								ŝ
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	_	_	—	—	—	—					CAL<	<9:0>					0000
0200	RICCON	15:0	ON	_	SIDL	—	—	—		—	RTSECSEL	RTCCLKON	—		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	—			—					_	—	0000						
0210	RICALIN	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARPT	<7:0>				0000
0220	RTCTIME	31:16	—	_	HR1	0<1:0>		HR01	<3:0>		—	М	IN10<2:0>			MIN01	<3:0>		xxxx
0220		15:0	—		SEC10<2:	0>		SEC07	1<3:0>		—	—	—	-	_	_	—	—	xx00
0230	RTCDATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		—	—	—	MONTH10		MONTH	01<3:0>		xxxx
0230	RICDAIL	15:0	_	_	DAY	10<1:0>		DAY01	1<3:0>		—	—	—		_	W	/DAY01<2:0	>	xx00
0240	ALRMTIME	31:16	_		HR1	0<1:0>		HR01	<3:0>		_	М	IN10<2:0>			MIN01	<3:0>		xxxx
0240		15:0	—		SEC10<2:	0>	SEC01<3:0>					—	xx00						
0250	ALRMDATE	31:16	_	_	_	MONTH10 MONTH01<3:0>					00xx								
0250	ALNIUATE	15:0		DAY1	0<3:0>		DAY01<3:0> — — — — — WDAY01<2:0>						xx0x						

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 5-4 **Unimplemented:** Read as '0'
- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read
 If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾ 11111111 = Alarm will trigger 256 times

> 00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24	HR10<1:0> HR01<3:0>										
00.40	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16			MIN10<2:0>			MIN01<3:0>					
45.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8			SEC10<2:0>			SEC01	<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	_	_	—	—	—	_	—	—			
Leaend:											

REGISTER 21-5: ALRMTIME: ALARM TIME VALUE REGISTER

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-28 HR10<1:0>: Binary Coded Decimal value of hours bits, 10s place digit; contains a value from 0 to 2

bit 27-24 **HR01<3:0>:** Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9 bit 23 **Unimplemented:** Read as '0'

bit 22-20 MIN10<2:0>: Binary Coded Decimal value of minutes bits, 10s place digit; contains a value from 0 to 5

bit 19-16 **MIN01<3:0>:** Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9 bit 15 **Unimplemented:** Read as '0'

bit 14-12 SEC10<2:0>: Binary Coded Decimal value of seconds bits, 10s place digit; contains a value from 0 to 5

bit 11-8 **SEC01<3:0>:** Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

23.1 Comparator Control Registers

TABLE 23-1: COMPARATOR REGISTER MAP

ess		0								Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
4000	CM1CON	31:16	_	_	-	_	-	_		-	—	_	-	—	—	—	_	—	0000
A000	CIVITCON	15:0	ON	COE	CPOL	_	-	_	_	COUT	EVPO	L<1:0>	-	CREF	_	—	CCH	<1:0>	00C3
A010	CM2CON	31:16	_	_		_		_			_	_		_	_	_	_	_	0000
7010	CIVIZCON	15:0	ON	COE	CPOL		-		-	COUT	EVPO	L<1:0>	-	CREF	—	—	CCH	<1:0>	00C3
A020	CM3CON	31:16	-				-		-	-	—	—	-	_	—	—		—	0000
A020	CIVISCON	15:0	ON	COE	CPOL	_	—	_	—	COUT	EVPO	L<1:0>	—	CREF	_	—	CCH	<1:0>	00C3
A060	CMSTAT	31:16	_	—	_	_	-	_	_		—	_	_	_	_	—	_	—	0000
7000	CIVISTAI	15:0	_	_	SIDL	_		_			-	_		_	-	C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

28.0 INSTRUCTION SET

The PIC32MX1XX/2XX family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

DC CHA	RACTERIS	TICS		ig temperature -	litions: 2.3V to 3.6V (unless otherwise stated) $40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp
Param. No.	Typical ⁽²⁾	Max.	Units		Conditions
Power-D	own Curre	nt (IPD) (No	otes 1, 5)		
DC40k	44	70	μA	-40°C	
DC40I	44	70	μA	+25°C	Base Power-Down Current
DC40n	168	259	μA	+85°C	
DC40m	335	536	μA	+105°C	
Module	Differential	Current			
DC41e	5	20	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)
DC42e	23	50	μA	3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)
DC43d	1000	1100	μA	3.6V	ADC: ΔIADC (Notes 3,4)

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8

• CPU is in Sleep mode, and SRAM data memory Wait states = 1

• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set

• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD

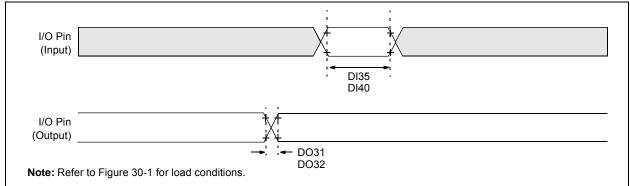
• RTCC and JTAG are disabled

2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

DC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.3V for a stated) \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Indus} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temperature} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVDD = VDD, AVSS = VSS		
D301	VICM	Input Common Mode Voltage	0	-	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)		
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)		
D303A	Tresp	Large Signal Response Time	_	150	400	ns	AVDD = VDD, AVSS = VSS (Note 1,2)		
D303B	TSRESP	Small Signal Response Time	-	1	_	μS	This is defined as an input step of 50 mV with 15 mV of overdrive (Note 2)		
D304	ON2ov	Comparator Enabled to Output Valid	_	_	10	μs	Comparator module is configured before setting the comparator ON bit (Note 2)		
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	_		
D312	TSET	Internal Comparator Voltage DRC Reference Setting time	_	—	10	μs	(Note 3)		

TABLE 30-13: COMPARATOR SPECIFICATIONS


Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAP	RACTERIS	STICS	Standard Ope (unless other Operating tem	wise state		≤ +85°C fc	or Industria	
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TIOR	Port Output Rise Tir	ne		5	15	ns	Vdd < 2.5V
					5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Tim	е	_	5	15	ns	Vdd < 2.5V
					5	10	ns	VDD > 2.5V
DI35	Tinp	INTx Pin High or Lo	w Time	10	_	_	ns	_
DI40	Trbp	CNx High or Low Tir	me (input)	2	_		TSYSCLK	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

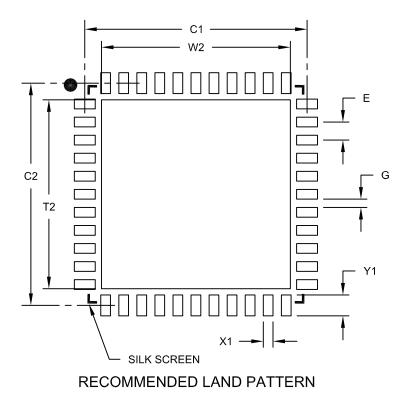
TABLE 31-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp							
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions			
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		_	ns	_			
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2	—		ns	—			
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 31-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS


AC CHA	RACTERIS	TICS	Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2			ns				
SP71	TscH	Tsck/2	_	_	ns	—				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

NOTES: