

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx220f032bt-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

6.1 Reset Control Registers

TABLE 6-1: RESET CONTROL REGISTER MAP

dress #)											Bits								ú
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F600	BCON	31:16	—	—	_	—	—	—	—	—	—	_	_	—	—	_	—	—	0000
F600	RCON	15:0	—	_	—	—	_	-	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx(2)
E610	DOMIDET	31:16	—	_	—	—	_	-	_	—	—	—	—	_	—	_	_	—	0000
F610	NOWRO1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	—	—	—	—	—	—	—	—						
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	—	—	—	—	—	-	—	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8				CHCSIZ	<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7.0		CHCSIZ<7:0>												

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—	—	—	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	_	—	_	—	
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
15:8				CHCPTR	<15:8>				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7.0	CHCPTR<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

sss										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	DD00D(1)	31:16	_	—	—	_	—	—	—	—	_	_	—	_	—	—	—	_	0000
FB8C	RPCOR	15:0	—	—	—	_	—	—	—	—	_	_	_	_		RPC8	<3:0>		0000
5000	DD0000(3)	31:16	—	_	_	_	_	_	—	_	—	—	_	—	_	_	—	_	0000
FB90	KPC9R ^{ey}	15:0	—	_	_	_	_	_	—	_	_	_	_	_		RPC9	<3:0>		0000

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

2:

This register is only available on 44-pin devices. This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices. 3:

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Figure 12-1 illustrates a general block diagram of Timer1.

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		¢,									Bits								6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	-	_	-	-	_	_	—	_	_	_	—	_	_	_	0000
0000	WDICON	15:0	ON	_	_	_	—	_	_	_	_		SI	VDTPS<4:	0>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

15.1 **Input Capture Control Registers**

AB	LE 15-1:	IN	PUT CA	PTURE	E 1-INPU		URE 5	REGIST	ER MA	2							
ess		â								Bi	ts						
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1
2000		31:16				—	—	_	—						—	—	—
2000	IC ICON.	15:0	ON		SIDL	_	—	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0
2010	IC1BUF	31:16 15:0								IC1BUF	<31:0>						
2200		31:16	_	_	_	—	—	_	—	—	_	_	-	_	—	—	_
2200	1020011	15:0	ON		SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0
2210	IC2BUF	31:16 15:0								IC2BUF	<31:0>						
2400		31:16	—	—	_	_	_	_	_	—	_	—	_	—	_	—	_
2400	IC3CON /	15:0	ON	_	SIDL	—	—	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0
2410	IC3BUF	31:16 15:0								IC3BUF	<31:0>						
2600		31:16	_		_	-	-		—	—	_				—	—	_
2000	1040011	15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0
2610	IC4BUF	31:16 15:0		IC4BUF<31:0>													
2800		31:16	_		_	-	-		—	—	_				—	—	—
2000	1000010	15:0	ON	_	SIDL	—	_	_	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0
2810	IC5BUF	31:16 15:0								IC5BUF	<31:0>						

T

Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

All Resets

0000

0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 xxxx xxxx

16/0

—

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 18-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	HC = Cleared in Hardware	e	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** I²C Enable bit⁽¹⁾

bit 12

- 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
- 0 = Disables the I^2C module; all I^2C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock
 - 0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave
	Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	DMCON	31:16		_	—	—	—	—	—	—		—	—			—	_	—	0000
7000	FINCON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	_	CS1P	—	WRSP	RDSP	0000
7010		31:16	—	_	—	—	_	_	_	—	_	—	_	_	_	_	_	—	0000
7010	PININODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	_	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	=<1:0>	0000
		31:16	—	_	_	—	_	_	_	_	_	—	_	_	_	—	_	—	0000
7020	PMADDR	45.0		CS1															0000
		15:0	_	ADDR14	_	_	_					1	ADDR<10:0	>					
7000		31:16								DATAOU	T -04-05								0000
7030	PIVIDOUT	15:0								DATAOU	1<31.0>								0000
7040		31:16									1-21:05								0000
7040	PIVIDIN	15:0 DATAIN<31:0>												0000					
7050		31:16	_	_	_	—	_	_	-	_	_	_	-	_	_	-	_	_	0000
7050	PMAEN	15:0	_	PTEN14	_	_	_						PTEN<10:0	>					0000
7000	DMOTAT	31:16		_	_	_	_	_	—	—	_	—	—	_	—	—	_	_	0000
1060	PINSTAL	15:0	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. Following are some of the key features of this module:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- · Provides calendar: day, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap vear correction
- · BCD format for smaller firmware overhead
- · Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess		0	Bits											\$					
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F0.40		31:16	—	—	_	_	—	_	_	—	_	_	_		_	—		—	0000
F240 PIVI	FIVIDI	15:0	_	_		CVRMD	_		_	CTMUMD	—	_			_	-		AD1MD	0000
5050		31:16	_	-			_		_	—	_	_			_	-		_	0000
F230	FIVIDZ	15:0	_	_	_	_	—	_	_	—	_	—	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
E260	PMD3	31:16	—	—	_	_	—	_	—	—	—	—	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	T WID5	15:0	—	—	_	_	—	_	—	—	—	—	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	—	—	_	_	—	_	—	—	—	—	_	_	—	—	-	—	0000
F270		15:0	—	—	_	_	—	_	—	—	—	—	_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	—	—	_	_	—	_	—	USB1MD	—	—	_	_	—	—	I2C1MD	I2C1MD	0000
F200	T WD5	15:0	—	—	_	_	—	_	SPI2MD	SPI1MD	—	—	_	_	—	—	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	—	_	_	-	_	_	_	-	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	—	_	_	-	_	_	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

3: See the "Pin Diagrams" section for the 5V tolerant pins.

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)							
			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	aram. No. Symbol Characteristics		Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V				
		I/O Pins	Vss	—	0.2 Vdd	V				
DI18		SDAx, SCLx	Vss	_	0.3 Vdd	V	SMBus disabled (Note 4)			
DI19		SDAx, SCLx	Vss	_	0.8	V	SMBus enabled (Note 4)			
	VIH	Input High Voltage								
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	_	Vdd	V	(Note 4,6)			
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	_	5.5	V	(Note 4,6)			
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 VDD	—	5.5	V				
DI28		SDAx, SCLx	0.65 VDD	_	5.5	V	SMBus disabled (Note 4,6)			
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)			
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)			
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	—	-50	μA	VDD = 3.3V, VPIN = VDD			
	liL	Input Leakage Current (Note 3)								
DI50		I/O Ports	_	—	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance			
DI51		Analog Input Pins	_	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD$, Pin at high-impedance			
DI55		MCLR(2)	—	—	<u>+</u> 1	μA	$VSS \leq VPIN \leq VDD$			
DI56		OSC1	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$			

TABLE 30-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Pin Diagrams" section for the 5V-tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 30-34: ADC MODULE SPECIFICATIONS

		ACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 5): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Device	Supply							
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.5	_	Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss	—	AVDD	V	(Note 1)	
Referen	ce Inputs							
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)	
AD06	Vrefl	Reference Voltage Low	AVss	—	VREFH – 2.0	V	(Note 1)	
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVdd	V	(Note 3)	
AD08	IREF	Current Drain	_	250	400	μA	ADC operating	
AD08a			—	—	3	μA	ADC off	
Analog	Analog Input							
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	—	
AD13	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	—	AVDD/2	V	—	
AD14	VIN	Absolute Input Voltage	AVss – 0.3	—	AVDD + 0.3	V	—	
AD15	—	Leakage Current	_	±0.001	±0.610	μA	$\label{eq:VINL} \begin{array}{l} VAVB = AVSS = VREFL = 0V,\\ AVDD = VREFH = 3.3V\\ Source Impedance = 10\ k\Omega \end{array}$	
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	_	5k	Ω	(Note 1)	
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-				
AD20c	Nr	Resolution		10 data bit	s	bits	—	
AD21c	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD22c	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)	
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V	
AD24c	EOFF	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V	
AD25c	_	Monotonicity		_	_	_	Guaranteed	

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

АС СНА	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
PM1	Tlat	PMALL/PMALH Pulse Width	—	1 Трв		—	_		
PM2	Tadsu	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	2 Трв	_	—	_		
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	_	_	_		
PM4	Tahold	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_		
PM5	Trd	PMRD Pulse Width	_	1 Трв	_		—		
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	_	ns	_		
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	_	ns			

TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS

	DC CHAF	RACTERISTICS	$\label{eq:constraint} \begin{array}{l} \mbox{Standard Operating Conditions (see Note 3):2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
CTMU CUR	CTMU CURRENT SOURCE									
CTMUI1	IOUT1	Base Range ⁽¹⁾	_	0.55		μA	CTMUCON<9:8> = 01			
CTMUI2	IOUT2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUCON<9:8> = 10			
CTMUI3	IOUT3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11			
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550	_	μA	CTMUCON<9:8> = 00			
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)		0.598	—	V	TA = +25°C, CTMUCON<9:8> = 01			
					0.658	—	V	TA = +25°C, CTMUCON<9:8> = 10		
			_	0.721	_	V	TA = +25°C, CTMUCON<9:8> = 11			
CTMUFV2	VFVR	Temperature Diode Rate of	—	-1.92		mV/ºC	CTMUCON<9:8> = 01			
		Change ^(1,2)	—	-1.74	_	mV/ºC	CTMUCON<9:8> = 10			
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11			

Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Contact Pitch	E		0.65 BSC				
Optional Center Pad Width	W2			4.25			
Optional Center Pad Length	T2			4.25			
Contact Pad Spacing	C1		5.70				
Contact Pad Spacing	C2		5.70				
Contact Pad Width (X28)	X1			0.37			
Contact Pad Length (X28)	Y1			1.00			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A