

Welcome to E-XFL.COM

Microchip Technology - PIC32MX220F032CT-50I/TL Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

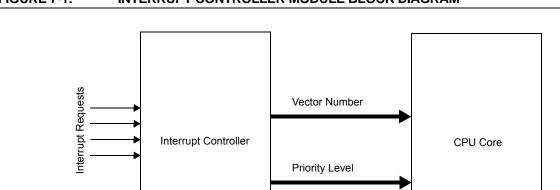
Details

Details	
Product Status	Obsolete
Core Processor	MIPS32® M4K [™]
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	23
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx220f032ct-50i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.0 INTERRUPT CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX1XX/2XX 28/36/44-pin Family interrupt module includes the following features:

- Up to 64 interrupt sources
- · Up to 44 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- · Software can generate any interrupt
- User-configurable Interrupt Vector Table (IVT) location
- User-configurable interrupt vector spacing

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Note: The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/36/44-pin Family devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
31:24	_	_	_	—	_		_	—							
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0							
23.10	—	—	—	—	—	—	—	—							
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0							
15:8	—	_		_	_	SRIPL<2:0> ⁽¹⁾									
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
7:0	_	_			VEC	<5:0> ⁽¹⁾	VEC<5:0> ⁽¹⁾								

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾
 - 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

D:/	Dit	Dit	D:	Dit	D'i	D''	Dir	Dit				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24	IPTMR<31:24>											
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	IPTMR<23:16>											
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
10.0	IPTMR<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7.0		IPTMR<7:0>										

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	DCH1SSIZ	31:16	—	_	—	_		_	_	_	_		-	_	-	—	_	_	0000
5170	DOITIOOIZ	15:0								CHSSIZ	2<15:0>								0000
3180	DCH1DSIZ	31:16	_	_		—	—	—	_	-	—	—	_		_	—	_	—	0000
5100	DOITIDOIZ	15:0								CHDSIZ	2<15:0>								0000
3190	DCH1SPTR									0000									
0100		1SPTR 15:0> 0								0000									
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
017.00		15:0								CHDPT	R<15:0>								0000
31B0	DCH1CSIZ	31:16	_	_	—	—	—	—	_	_	—	—	_	—	—	—	—	-	0000
0.20		15:0								CHCSIZ	2<15:0>								0000
31C0	DCH1CPTR	31:16	_	_	_	—	—	—	_	_	—	—	—		—	—	—		0000
0.00		15:0								CHCPTI	R<15:0>								0000
31D0	DCH1DAT	31:16	—	_	—	—	—	—	—	_	_	—	—		—	—	—		0000
0.20		15:0	—	_	—	—	—	—	—	_				CHPDA					0000
31F0	DCH2CON	31:16	—	_	—	—	—	—	—	_		_	—	_	_	—	—		0000
0.20			CHBUSY	_	_	—	_	_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	<1:0>	0000
31F0	DCH2ECON	31:16	_	_	—	—	—	—	_	_				CHAIR					00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF00
3200	DCH2INT	31:16	—	—	—	—	—	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	_	_		—	—	—			CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3210	DCH2SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
3220		31:16								CHDSA	<31:0>								0000
		15:0								1									0000
3230	DCH2SSIZ	31:16		—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
		15:0								CHSSIZ	2<15:0>								0000
3240	DCH2DSIZ	31:16			—	_	—	_	_	<u> </u>	—	—	—	—	—	—	_	—	0000
		15:0								CHDSIZ	2<15:0>								0000
3250	DCH2SPTR	31:16			—	_	—	_	_	<u> </u>	—	—	—	—	—	—	_		0000
		15:0								CHSPTI	≺<15:0>								0000
3260	DCH2DPTR	31:16			—	_	—	_	_	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDPTI	R<15:0>								0000
3270	DCH2CSIZ	31:16		_	—	—	—	—	—		—	—	—	—	—	—	_		0000
		15:0								CHCSI2 exadecimal									0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	-	—	_	_	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_		_	RDWR	Γ	DMACH<2:0>	>

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	DMAADDR<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	DMAADDR<23:16>										
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	DMAADDR<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				DMAADD	R<7:0>						

Legend:					
R = Readable bit	W = Writable bit	= Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGIOTE												
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	_	—	_	—	—				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16		_		_	_		_	—				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHSSIZ<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHSSIZ	<7:0>							

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	_	—	_	_	—	_	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	_	—	_	—				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHDSIZ<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHDSIZ	<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection				
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect				
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>				
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1				
RPB15	RPB15R	RPB15R<3:0>					
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT				
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved				
RPC0	RPC0R	RPC0R<3:0>	•				
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved				
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect				
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved				
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1				
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2				
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved				
RPA8	RPA8R	RPA8R<3:0>					
RPC8	RPC8R	RPC8R<3:0>	•				
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved				
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect				
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved				
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2				
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4				
RPB2	RPB2R	RPB2R<3:0>					
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved				
RPC1	RPC1R	RPC1R<3:0>					
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved				
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect				
RPB14	RPB14R	RPB14R<3:0>					
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>				
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3				
RPB9	RPB9R	RPB9R<3:0>	0110 = Reserved 0111 = C1OUT				
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved				
RPC2	RPC2R	RPC2R<3:0>					
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved				

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB00	RPA0R	31:16		—	—	—	_	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	_	_	—	_	_	—	—	—		RPA0	<3:0>		0000
FB04	RPA1R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 001		15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA1	<3:0>		0000
FB08	RPA2R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 000	i (i / t <u>2</u> i (15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA2	<3:0>		0000
FB0C	RPA3R	31:16	_	_	—	—	_	_	_	_	_	—	_	—	_	—		—	0000
T BOC		15:0	_		—	_	_	_	—	_	_		—	_		RPA3	<3:0>		0000
FB10	RPA4R	31:16		_	_	_	_	_	_	_	_		_	_	_			—	0000
T D IO		15:0	—	—	—	—	_		—	_		—	—	—		RPA4	<3:0>		0000
FB20	RPA8R ⁽¹⁾	31:16	—	—	—	—	_		—	_		—	—	—	_	—	—	—	0000
1 020		15:0	_	—	—	—	_		—	_		—	—	—		RPA8	<3:0>		0000
FB24	RPA9R ⁽¹⁾	31:16	—	—	—	—	-		_	-		_	_	—	-	—	_	—	0000
1 D24	KFA9K /	15:0	—	—	—	—	-		_	-		_	_	—		RPA9	<3:0>		0000
FB2C	RPB0R	31:16	_	_	—	—	_	-	_	_	-	—	_	—	_	_	_	—	0000
1 020	KF DUK	15:0	_	—	—	—	_	_	—	_	_	—	—	—		RPB0	<3:0>		0000
FB30	RPB1R	31:16	—	_	—	—			—			—	—	—		_	—	—	0000
FB30	REDIR	15:0	—	_	—	—			—			—	—	—		RPB1	<3:0>		0000
FB34	RPB2R	31:16	_	_	_	_			_			_	_	_		_	_	—	0000
FB34	RPBZR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB2	<3:0>		0000
FB38	RPB3R	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
FB30	RPBJR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB3	<3:0>		0000
FD2C		31:16	—	—	—	—	—	_	_	—	_	—	_	—	—	—	—	—	0000
FB3C	RPB4R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPB4	<3:0>		0000
ED 40		31:16			—	—	—	-	—	—	—	—	—	—	_			—	0000
FB40	RPB5R	15:0	_		—										RPB5<3:0> 00				
5044		31:16	_	—	_	—	—	_	_	_	_	—	_	—	_	_	_	—	0000
FB44	RPB6R ⁽²⁾	15:0	_	—	_	—	_	_	_	_	_	—	_	—					0000
50.40		31:16	_	—	_	—	_	_	_	_	_	—	_	—	_	_	_	—	0000
FB48	RPB7R	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB7	<3:0>		0000

DS60001168J-page 138

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: This register is only available on PIC32MX1XX devices.

3: This register is only available on 36-pin and 44-pin devices. PIC32MX1XX/2XX 28/36/44-PIN FAMILY

24.1 Comparator Voltage Reference Control Register

TABLE 24-1 :	COMPARATOR VOLTAGE REFERENCE REGISTER MAP
---------------------	---

ress t)		e		Bits												ŝ			
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	CVRCON	31:16	_	_	—	—	_	—	_	_	—	—	—	_	—	_	_	—	0000
9800	CVRCON	15:0	ON	_	_	_	_	_	_	_	_	CVROE	CVRR	CVRSS		CVR<	3:0>		0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

25.1 CTMU Control Registers

TABLE 25-1: CTMU REGISTER MAP

ess		6								Bits									ú
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset:
A 200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	SEL<3:0>		—	_	0000
A200	CINUCON	15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	DGSEQEN IDISSEN CTTRIG ITRIM<5:0> IRNG<1:0						<1:0>	0000			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

26.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power- Saving Features" (DS60001130), which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site
	(www.microchip.com/pic32).
	(

This section describes power-saving features for the PIC32MX1XX/2XX 28/36/44-pin Family. The PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

26.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers
- LPRC Run mode: the CPU is clocked from the LPRC clock source
- Sosc Run mode: the CPU is clocked from the Sosc clock source

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

26.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as follows:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

26.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

26.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 26.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

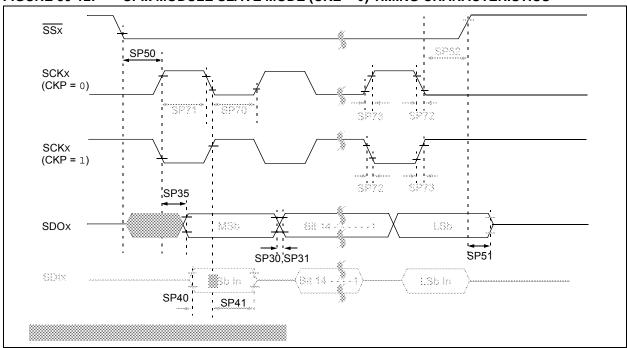
bit 18-10 **PWP<8:0>:** Program Flash Write-Protect bits⁽³⁾

DIT 18-10	PWP<8:0>: Program Flash Write-Protect bits ³⁰
	Prevents selected program Flash memory pages from being modified during code execution. 11111111 = Disabled
	111111110 = Memory below 0x0400 address is write-protected
	111111101 = Memory below 0x0400 address is write-protected
	111111100 = Memory below 0x0000 address is write-protected
	111111001 = Memory below 0x0000 address is write-protected
	111111010 = Memory below 0x1000 (44) address is write-protected
	111111001 = Memory below 0x1400 address is write-protected
	111111000 = Memory below 0x1000 address is write-protected
	111110111 = Memory below 0x2000 (8K) address is write-protected
	111110110 = Memory below 0x2400 address is write-protected
	111110101 = Memory below 0x2800 address is write-protected
	111110100 = Memory below 0x2C00 address is write-protected
	111110011 = Memory below 0x3000 address is write-protected
	111110010 = Memory below 0x3400 address is write-protected
	111110001 = Memory below 0x3800 address is write-protected
	111110000 = Memory below 0x3C00 address is write-protected
	111101111 = Memory below 0x4000 (16K) address is write-protected
	•
	•
	• 110111111 = Memory below 0x10000 (64K) address is write-protected
	•
	•
	•
	101111111 = Memory below 0x20000 (128K) address is write-protected
	•
	•
	011111111 = Memory below 0x40000 (256K) address is write-protected
	•
	•
	00000000 = All possible memory is write-protected
bit 9-5	Reserved: Write '1'
bit 4-3	ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits ⁽²⁾
	11 = PGEC1/PGED1 pair is used
	10 = PGEC2/PGED2 pair is used
	01 = PGEC3/PGED3 pair is used
	00 = PGEC4/PGED4 pair is used ⁽²⁾
bit 2	JTAGEN: JTAG Enable bit ⁽¹⁾
bit 2	1 = JTAG is enabled
	0 = JTAG is disabled
bit 1-0	DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
	1x = Debugger is disabled
	0x = Debugger is enabled
Note 1:	This bit sets the value for the JTAGEN bit in the CFGCON register.
	-
2:	The PGEC4/PGED4 pin pair is not available on all devices. Refer to the " Pin Diagrams " section for
	availability.
-	

3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

DC CHA		STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments				
D300	VIOFF	Input Offset Voltage	-	±7.5	±25	mV	AVDD = VDD, AVSS = VSS				
D301	VICM	Input Common Mode Voltage	0	-	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)				
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)				
D303A	Tresp	Large Signal Response Time	_	150	400	ns	AVDD = VDD, AVSS = VSS (Note 1,2)				
D303B	TSRESP	Small Signal Response Time	-	1	_	μS	This is defined as an input step of 50 mV with 15 mV of overdrive (Note 2)				
D304	ON2ov	Comparator Enabled to Output Valid	_	_	10	μs	Comparator module is configured before setting the comparator ON bit (Note 2)				
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	_				
D312	TSET	Internal Comparator Voltage DRC Reference Setting time	_	—	10	μs	(Note 3)				

TABLE 30-13: COMPARATOR SPECIFICATIONS


Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—	_	ns	—			
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	—		ns	—			
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32			
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after	—	_	15	ns	VDD > 2.7V			
	TscL2DoV	SCKx Edge	—	—	20	ns	VDD < 2.7V			
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—			
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	_			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	—		ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA		ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta ≤	V to 3.6V +85°C for Industrial +105°C for V-temp
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	—	μs	—
			400 kHz mode	Трв * (BRG + 2)	_	μS	—
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μs	_
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	_	μs	—
			400 kHz mode	Трв * (BRG + 2)	_	μs	—
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	—
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode (Note 2)	100	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode (Note 2)	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	_	μS	Only relevant for
		Setup Time	400 kHz mode	Трв * (BRG + 2)	—	μS	Repeated Start condition
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	After this period, the
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	μs	first clock pulse is generated
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS	generaleu
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)		μS	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μs	
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—
		Hold Time	400 kHz mode	Трв * (BRG + 2)		ns]
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	ns	

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

TABLE 30-34: ADC MODULE SPECIFICATIONS

			(unless oth	erwise sta	ted)		e 5): 2.5V to 3.6V
			Operating te	emperature			C for Industrial °C for V-temp
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Device	Supply						
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 2.5	—	Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss	_	AVdd	V	(Note 1)
Referen	ce Inputs	·					·
AD05 AD05a	Vrefh	Reference Voltage High	AVss + 2.0 2.5	_	AVDD 3.6	V V	(Note 1) VREFH = AVDD (Note 3)
AD06	Vrefl	Reference Voltage Low	AVss	—	Vrefh – 2.0	V	(Note 1)
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.0	—	AVDD	V	(Note 3)
AD08 AD08a	IREF	Current Drain	_	250 —	400 3	μΑ μΑ	ADC operating ADC off
Analog	Input	·					
AD12	VINH-VINL	Full-Scale Input Span	VREFL	—	Vrefh	V	—
AD13	VINL	Absolute VINL Input Voltage	AVss – 0.3	—	AVDD/2	V	_
AD14	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	—
AD15	—	Leakage Current	_	±0.001	±0.610	μA	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ $AV_{DD} = V_{REFH} = 3.3V$ Source Impedance = 10 k Ω
AD17	RIN	Recommended Impedance of Analog Voltage Source	_	_	5k	Ω	(Note 1)
ADC Ac	curacy – N	leasurements with Exte	rnal VREF+/V	REF-			
AD20c	Nr	Resolution		10 data bit	S	bits	—
AD21c	INL	Integral Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD22c	DNL	Differential Non-linearity	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2)
AD23c	Gerr	Gain Error	> -1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V
AD24c	Eoff	Offset Error	> -1	_	< 1	Lsb	VINL = AVSS = 0V, AVDD = 3.3V
AD25c	_	Monotonicity	_	_		_	Guaranteed

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

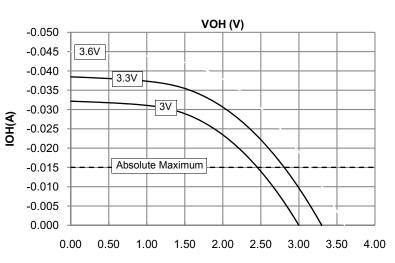
4: Characterized with a 1 kHz sine wave.

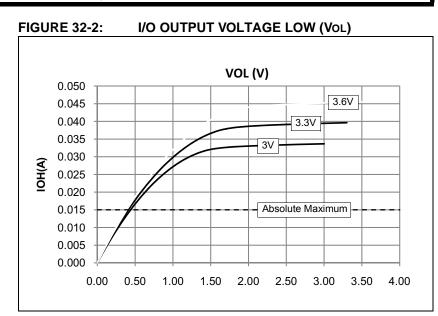
5: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

AC CHARACTERISTICS ⁽²⁾			$ \begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.5V to 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \\ \end{array} $				
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration		
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC		
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF-		

TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

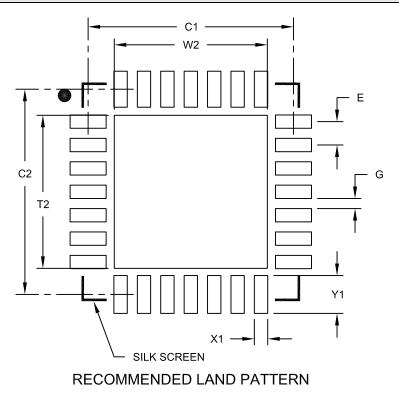
Note 1: External VREF- and VREF+ pins must be used for correct operation.


2: These parameters are characterized, but not tested in manufacturing.


3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


FIGURE 32-1: I/O OUTPUT VOLTAGE HIGH (VOH)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensi	MIN	NOM	MAX	
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES: