

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx220f032dt-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24			_	—	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	_	—	_	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8				BMXDU	DBA<15:8>					
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	BMXDUDBA<7:0>									

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R	R	R	R	R	R	R	R			
31:24	BMXDRMSZ<31:24>										
00.40	R	R	R	R	R	R	R	R			
23:10	BMXDRMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8				BMXDRI	MSZ<15:8>						
7.0	R	R	R	R	R	R	R	R			
7:0	BMXDRMSZ<7:0>										

BMXDRMSZ: DATA RAM SIZE REGISTER REGISTER 4-5:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes: 0x00001000 = Device has 4 KB RAM 0x00002000 = Device has 8 KB RAM 0x00004000 = Device has 16 KB RAM 0x00008000 = Device has 32 KB RAM 0x00010000 = Device has 64 KB RAM

REGISTER 4-6: BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24	—	—	—	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	_	_	_	—	BMXPUPBA<19:16>							
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0				
15:8	BMXPUPBA<15:8>											
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		BMXPUPBA<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits

bit 10-0 BMXPUPBA<10:0>: Read-Only bits This value is always '0', which forces 2 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXPFMSZ.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7. "Resets"** (DS60001118), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- Power-on Reset (POR)
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/36/44-pin
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 6. "Oscillator
	Configuration" (DS60001112), which is
	available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS				Bits															
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5404		31:16	-	—	-	-	-	—	—	—	-	—	—	—	—	—	-	—	0000
FA04	INTIR	15:0	_	_	_	—	—	_	_	—	_	_	_	_		INT1F	R<3:0>		0000
EVUS		31:16		—	_	—	_	_	_	_		—	_	_	_	_	—		0000
FAUO	INTZR	15:0	_	—	—	—	—	—	—	—	_	—	—	_		INT2F	R<3:0>		0000
EAOC		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
TAUC	INTOK	15:0	_	_				_	—		_	_	—	_		INT3F	R<3:0>		0000
EA10		31:16	_	_				_	—		_	_	—	_	_	—	—	_	0000
1710		15:0	_	—	—	—	—	—	—	—	—	—	—	—		INT4F	R<3:0>		0000
FA18	T2CKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17(10	120101	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T2CK	R<3:0>		0000
FA1C	T3CKR	31:16	_	—	—	—	—	—	—	—	-	—	—	—	—		—	—	0000
TAIC	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T3CK	R<3:0>		0000
EA20	TACKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1720	140111	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T4CK	R<3:0>		0000
EA24		31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1724	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T5CK	R<3:0>		0000
FA28		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1 A20	ICIK	15:0	_	_	—			_	_		_	_	_			IC1R	<3:0>		0000
FA2C	IC2P	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1720	10211	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
EA30	IC3P	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
EA34		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17.04		15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
EA38	IC5R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1740		15:0	—	—	—	—	—	—	—	—	—	—	—	—		OCFA	R<3:0>		0000
FAAC	OCEBR	31:16	_	—	—	_	_	—	—	_	_	—	—	—	—	—	—	_	0000
1740		15:0	_	—	—	—	—	—	—	—	_	—	—	—		OCFB	R<3:0>		0000
EA 50		31:16	_	_	-	—	-	—	—	—	_	_	—	—	—	—	—	—	0000
FA5U	UIKAR	15:0	_	_	-	-		_	_	_	_	_	_	—		U1RX	R<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABL	.E 11-6:	PEF	RIPHER	AL PIN	SELEC		I REGI	SIERM			:D)								
ss										В	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	_		_		_	—		—		—		_	—	—	—	—	0000
FA94	UICISK	15:0	_		_	_	—	—	_	—	—	—		_		U1CTS	R<3:0>		0000
		31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FADO	UZRAR	15:0	_		_	_	—	—	_	—	—	—		_		U2RXI	R<3:0>		0000
EAEC	LIDOTOD	31:16	_		—	_	_	—	_	_	_	_		_	_	_	—	—	0000
FASC	UZCISK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		U2CTS	R<3:0>		0000
EV01	SD11D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA04	SDIK	15:0	_	—	_	—	—	—	—	—	—	—	_	—		SDI1F	R<3:0>		0000
EV 00	881D	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA00	33 IK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SS1R	<3:0>		0000
EAOO	20120	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
FA90	SDIZK	15:0	—	—	—	—	—	—	—	—	—	—	—	—		SDI2F	R<3:0>		0000
EA04	660D	31:16	_		_	_	—	—	_	—	—	—		_	—	—		—	0000
FA94	332R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		SS2R	<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FADO	REFULKIR	15:0	_	_	_	_	_	_	_	_	_	_	_	_		REFCL	(IR<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	—	_	_	_	—

REGISTER 11-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A, B, C)

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Figure 12-1 illustrates a general block diagram of Timer1.

NOTES:

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- bit 4 DISSDI: Disable SDI bit
 - 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit can only be written when the ON bit = 0.
 - 3: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 18-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	HC = Cleared in Hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** I²C Enable bit⁽¹⁾

bit 12

- 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
- 0 = Disables the I^2C module; all I^2C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock
 - 0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/36/44-pin Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

Key features of the UART module include:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART module.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 4 Unimplemented: Read as '0' CS1P: Chip Select 0 Polarity bit⁽²⁾ bit 3 1 = Active-high (PMCS1) $0 = \text{Active-low}(\overline{PMCS1})$ bit 2 Unimplemented: Read as '0' bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR) For Master mode 1 (MODE<1:0> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Read Strobe active-high (PMRD) $0 = \text{Read Strobe active-low}(\overline{PMRD})$ For Master mode 1 (MODE<1:0> = 11): 1 = Read/write strobe active-high (PMRD/PMWR)
 - 0 = Read/write strobe active-low (PMRD/PMWR)
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	—	_	—
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	BUSY	IRQM<1:0>		INCM<1:0>		—	MODE	=<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB<1:0>(1)			WAITM	WAITE<1:0>(1)			

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address
- bit 10 Unimplemented: Read as '0'
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
 - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)
- bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
 - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
 - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
 - 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾

- 1111 = Wait of 16 Трв •
- . 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	—	—	—	—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL<1:0>		_	CREF	_	_	CCH	<1:0>

REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 10 EDGSEQEN: Edge Sequence Enable bit 1 = Edge1 must occur before Edge2 can occur 0 = No edge sequence is needed IDISSEN: Analog Current Source Control bit⁽²⁾ bit 9 1 = Analog current source output is grounded 0 = Analog current source output is not grounded bit 8 **CTTRIG:** Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current bit 1-0 IRNG<1:0>: Current Range Select bits⁽³⁾ 11 = 100 times base current 10 = 10 times base current
 - 01 = Base current level
 - 00 = 1000 times base current⁽⁴⁾
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical 3: Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions				
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of the power pins.
DI60b	Іісн	Input High Injection Current	0	_	+5(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins.
DI60c	∑lict	Total Input Injection Current (sum of all I/O and Control pins)	-20 (6)	_	+20(6)	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (VSS - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾ Max.		Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	_	μs	—	
			400 kHz mode	Трв * (BRG + 2)	_	μs	—	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	—	
			400 kHz mode	Трв * (BRG + 2)	—	μS	—	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS	—	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode (Note 2)	100	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode (Note 2)	0	0.3	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)		μS	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	—	μS	Repeated Start	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs		
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)		μs	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	μS	first clock pulse is	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	generaleu	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)		μS	_	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μs		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	Трв * (BRG + 2)		ns		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	ns		

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	K	0.20	_	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

INDEX

Numerics

50 MHz Electrical Characteristics	301
Α	
AC Characteristics	269
10-Bit Conversion Rate Parameters	291
ADC Specifications	289
Analog-to-Digital Conversion Requirements	292
EJTAG Timing Requirements	300
Internal FRC Accuracy	271
Internal RC Accuracy	271
OTG Electrical Specifications	298
Parallel Master Port Read Requirements	297
Parallel Master Port Write	298
Parallel Master Port Write Requirements	298
Parallel Slave Port Requirements	296
PLL Clock Timing	271
Analog-to-Digital Converter (ADC)	209
MPASM Assembler	254

В

Block Diagrams	
ADC Module	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
Core and Peripheral Modules 19	
CPU	
CTMU Configurations	
Time Measurement 227	
DMA	
I2C Circuit 174	
Input Capture 157	
Interrupt Controller63	
JTAG Programming, Debugging and Trace Ports 250	
Output Compare Module 161	
PMP Pinout and Connections to External Devices 189	
Reset System59	
RTCC 199	
SPI Module165	
Timer1143	
Timer2/3/4/5 (16-Bit)147	
Typical Multiplexed Port Structure 127	
UART	
WDT and Power-up Timer 153	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	

С

C Compilers	
MPLAB C18	
Charge Time Measurement Unit. See CTMU.	
Clock Diagram	74
Comparator	
Specifications	267, 268
Comparator Module	219
Comparator Voltage Reference (CVref	
Configuration Bit	
Configuring Analog Port Pins	128
CPU	
Architecture Overview	
Coprocessor 0 Registers	35

27, 33
341
341
341

D

DC and AC Characteristics	
Graphs and Tables	307
DC Characteristics	258
I/O Pin Input Specifications	263, 264
I/O Pin Output Specifications	265
Idle Current (IIDLE)	261
Power-Down Current (IPD)	262
Program Memory	266
Temperature and Voltage Specifications	259
DC Characteristics (50 MHz)	302
Idle Current (IIDLE)	303
Power-Down Current (IPD)	303
Development Support	253
Direct Memory Access (DMA) Controller	83

Е

Electrical Characteristics	257
AC	269
Errata	16
External Clock	
Timer1 Timing Requirements	275
Timer2, 3, 4, 5 Timing Requirements	276
Timing Requirements	270
External Clock (50 MHz)	
Timing Requirements	304

F

Flash Program Memory	. 53
RTSP Operation	. 53

L

I/O Ports	127
Parallel I/O (PIO)	128
Write/Read Timing	128
Input Change Notification	128
Instruction Set	251
Inter-Integrated Circuit (I2C	173
Internal Voltage Reference Specifications	268
Internet Address	341
Interrupt Controller	63
IRG Vector and Bit Location	64

Μ

Memory Maps
PIC32MX110/210 Devices
(4 KB RAM, 16 KB Flash)
PIC32MX120/220 Devices
(8 KB RAM, 32 KB Flash) 39
PIC32MX130/230
(16 KB RAM, 256 KB Flash) 43
PIC32MX130/230 Devices
(16 KB RAM, 64 KB Flash) 40
PIC32MX150/250 Devices
(32 KB RAM, 128 KB Flash) 41
PIC32MX170/270