

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx220f032dt-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **30.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers provide 4 GB unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs), and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX1XX/2XX 28/36/44-pin Family devices to execute from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space
- · Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

4.1 PIC32MX1XX/2XX 28/36/44-pin Family Memory Layout

PIC32MX1XX/2XX 28/36/44-pin Family microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX1XX/2XX 28/36/44-pin Family devices are illustrated in Figure 4-1 through Figure 4-6.

Table 4-1 provides SFR memory map details.

NOTES:

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit Bit 31/23/15/7 30/22/		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	_	SUSPEND	DMABUSY	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_	_

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—	—	—	—	—	—				
00.40	U-0 U-0		U-0	U-0 U-0		U-0	U-0	U-0				
23.10	—	—	—	—	—	-	—	—				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	CHCSIZ<15:8>											
7.0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0 R/W-0		R/W-0	R/W-0				
7.0				CHCSIZ	<u>′</u> <7:0>							

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
		—	_	—	_								
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:10	—	—	—	—	_	—	_	—					
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
15:8	CHCPTR<15:8>												
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
				CHCPTF	R<7:0>								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit Bit 29/21/13/5 28/20/12/4		Bit Bit 27/19/11/3 26/18/10/2		Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
51.24	—	—		—	—	—	_	—	
22:16	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0	
23.10	—	—		—	—	—	_	—	
15.0	U-0	U-0	U-0 U-0		U-0 U-0		U-0	U-0	
15.0	—	—		—	—	—	_		
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS	
7:0	STALLE		RESIMEIE(2)		TRNIE(3)	SOFIE		URSTIF ⁽⁵⁾	
	UTALLI			IDELII		0011		DETACHIF ⁽⁶⁾	

REGISTER 10-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7		STALLIF: STALL Handshake Interrupt bit
	-	1 = In Host mode a STALL handshake was received during the handshake phase of the transaction
	I	In Device mode a STALL handshake was transmitted during the handshake phase of the transaction
	(0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
	-	1 = Peripheral attachment was detected by the USB module
	(0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
	-	$1 = K$ -State is observed on the D+ or D- pin for 2.5 μ s
	(0 = K-State is not observed
bit 4	I	IDLEIF: Idle Detect Interrupt bit
	-	1 = Idle condition detected (constant Idle state of 3 ms or more)
L:1 0	-	U = NO IDE CONDITION DELECTED
DIT 3		IRNIF: Token Processing Complete Interrupt Dit ^{ery}
	-	$\Gamma = \Gamma$ recessing of current token not complete.
hit 2	Ċ	SOFIE: SOF Taken Interrunt hit
		1 = SOE token received by the peripheral or the SOE threshold reached by the host
	(0 = SOF token was not received nor threshold reached
bit 1	I	UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
		1 = Unmasked error condition has occurred
	(0 = Unmasked error condition has not occurred
bit 0	l	URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
	-	1 = Valid USB Reset has occurred
	(0 = No USB Reset has occurred
		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
	-	1 = Peripheral detachment was detected by the USB module
	(0 = Peripheral detachment was not detected
Note	1:	This bit is valid only if the HOSTEN bit is set (see Register 10-11), there is no activity on the USB for
		2.5 μ s, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1FIF register will set this bit
	5:	
	6.	Host mode
	υ.	nost mode.

11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Key features of this module include:

- · Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 11-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection
INT4	INT4R	INT4R<3:0>	0000 = RPA0 0001 = RPB3
T2CK	T2CKR	T2CKR<3:0>	0010 = RPB4 0011 = RPB15 0100 = RPB7
IC4	IC4R	IC4R<3:0>	$0101 = \text{RPC7}^{(2)}$ $0110 = \text{RPC0}^{(1)}$ $0111 = \text{RPC5}^{(2)}$
SS1	SS1R	SS1R<3:0>	1000 = Reserved
REFCLKI	REFCLKIR	REFCLKIR<3:0>	: 1111 = Reserved
INT3	INT3R	INT3R<3:0>	0000 = RPA1 0001 = RPB5
ТЗСК	T3CKR	T3CKR<3:0>	0010 = RPB1 0011 = RPB11
IC3	IC3R	IC3R<3:0>	0100 = RPB8 $0101 = RPA8^{(2)}$
U1CTS	U1CTSR	U1CTSR<3:0>	$0110 = RPC8^{(2)}$ $0111 = RPA9^{(2)}$
U2RX	U2RXR	U2RXR<3:0>	•
SDI1	SDI1R	SDI1R<3:0>	• 1111 = Reserved
INT2	INT2R	INT2R<3:0>	0000 = RPA2
T4CK	T4CKR	T4CKR<3:0>	
IC1	IC1R	IC1R<3:0>	0011 = RPB13
IC5	IC5R	IC5R<3:0>	$0101 = \text{RPC6}^{(2)}$
U1RX	U1RXR	U1RXR<3:0>	$-0110 = \text{RPC1}^{(1)}$ 0111 = RPC3(1)
U2CTS	U2CTSR	U2CTSR<3:0>	1000 = Reserved
SDI2	SDI2R	SDI2R<3:0>	
OCFB	OCFBR	OCFBR<3:0>	• 1111 = Reserved
INT1	INT1R	INT1R<3:0>	0000 = RPA3 0001 = RPB14
T5CK	T5CKR	T5CKR<3:0>	0010 = RPB0 0011 = RPB10 0100 = RPB9
IC2	IC2R	IC2R<3:0>	$0101 = RPC9^{(1)}$ $0110 = RPC2^{(2)}$ $0111 = PPC4^{(2)}$
SS2	SS2R	SS2R<3:0>	1000 = Reserved
OCFA	OCFAR	OCFAR<3:0>	1111 = Reserved

Note 1: This pin is not available on 28-pin devices.

2: This pin is only available on 44-pin devices.

13.0 TIMER2/3, TIMER4/5

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features four synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events. The following modes are supported:

- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- · Synchronous external 16-bit timer

Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes:

- Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- Synchronous external 32-bit timer

Note:	In this chapter, references to registers,
	TxCON, TMRx and PRx, use 'x' to
	represent Timer2 through Timer5 in 16-bit
	modes. In 32-bit modes, 'x' represents
	Timer2 or Timer4 and 'y' represents
	Timer3 or Timer5.

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC event trigger (Timer3 in 16-bit mode, Timer2/3 in 32-bit mode)
- Fast bit manipulation using CLR, SET and INV registers

Figure 13-1 and Figure 13-2 illustrate block diagrams of Timer2/3 and Timer4/5.

FIGURE 13-1: TIMER2-TIMER5 BLOCK DIAGRAM (16-BIT)

REGISTER 13-1: TXCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)

- bit 3 T32: 32-Bit Timer Mode Select bit⁽²⁾
 - 1 = Odd numbered and even numbered timers form a 32-bit timer
 - 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3, and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

REGISTER 15-1: ICXCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)

ICM<2:0>: Input Capture Mode Select bits

bit 2-0

- 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
- 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
- 101 = Prescaled Capture Event mode every sixteenth rising edge
- 100 = Prescaled Capture Event mode every fourth rising edge
- 011 = Simple Capture Event mode every rising edge
- 010 = Simple Capture Event mode every falling edge
- 001 = Edge Detect mode every edge (rising and falling)
- 000 = Input Capture module is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

17.1 SPI Control Registers

TABLE 17-1: SPI1 AND SPI2 REGISTER MAP

ess		6								Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:	0>	MCLKSEL	—	_	—	—	—	SPIFE	ENHBUF	0000
3000	SFILCON	15:0	ON	-	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISI	EL<1:0>	0000
5040 CDI10TAT 31		31:16	_	_	_		RXE	BUFELM<4:	:0>		_	_	_		TX	BUFELM<4	:0>		0000
0100	SFIISTAI	15:0	—	—	—	FRMERR	SPIBUSY	-	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0008
5000 SPI1PLIE		31:16									31.05								0000
5620		15:0								DAIA	51.04								0000
5830 SPI1E	SPI1BRG	31:16	—		—	—	—	—	—	—	—	—	—	—	-	—	—	—	0000
		15:0	—	—	—						E	3RG<12:0>					C		
		31:16	_	—	—	—	—	_	—	—	—	—	—	—	—	—	-	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	—	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	—	—	AUD MONO	—	AUDMO	DC<1:0>	0000
	SDISCON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FI	RMCNT<2:	0>	MCLKSEL	_	_	_	_	_	SPIFE	ENHBUF	0000
5AUU	SFIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISI	EL<1:0>	0000
	CDIPCTAT	31:16		—	—		RXE	BUFELM<4:	:0>		—	_	_		TX	BUFELM<4	:0>		0000
5A10	3F1231AI	15:0		—	—	FRMERR	SPIBUSY	_	—	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	8000
E A 20		31:16									31.05								0000
5AZU	3F12D01	15:0								DAIA	51.0~								0000
EA 20	SDISEDC	31:16	_	—	—	_	_	_	—	—	_	—	—	—	—	—	_	—	0000
5A30		15:0	—		—			-			E	3RG<12:0>		-		-			0000
		31:16	—	-	—	—	-	—	—	-	-	-	—	—	-	—	—	—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	-	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	-	_	AUD MONO	_	AUDMO)D<1:0>	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

IC32MX1XX/2XX 28/36/44-PIN FAMILY

19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/36/44-pin Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UXCTS and UXRTS pins, and also includes an IrDA encoder and decoder.

Key features of the UART module include:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 38 bps to 12.5 Mbps at 50 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support

Figure 19-1 illustrates a simplified block diagram of the UART module.

FIGURE 19-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

26.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 26-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TARI E 26-1·	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS
TADLL 20-1.	FERIFILICAL MODULE DISABLE DITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Comparator 3	CMP3MD	PMD2<2>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
12C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

2: The module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

FIGURE 30-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typical ⁽²⁾ Max. Units Conditions				
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2		_	ns	_
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	-	ns	—
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	_
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	20	ns	VDD > 2.7V
	TscL2DoV	SCKx Edge	—	—	30	ns	VDD < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No. Symbol Characteristics			Min. Max. Units Conditions				
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	_
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode (Note 1)	250		ns	
IS40	TAA:SCL	TAA:SCL Output Valid from Clock	100 kHz mode	0	3500	ns	—
			400 kHz mode	0	1000	ns	
			1 MHz mode (Note 1)	0	350	ns	
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus
			400 kHz mode	1.3	—	μs	must be free before a new
			1 MHz mode (Note 1)	0.5	-	μS	transmission can start
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Linite	N		c
	N		3	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

INDEX

Numerics

50 MHz Electrical Characteristics	301
Α	
AC Characteristics	269
10-Bit Conversion Rate Parameters	291
ADC Specifications	289
Analog-to-Digital Conversion Requirements	292
EJTAG Timing Requirements	300
Internal FRC Accuracy	271
Internal RC Accuracy	271
OTG Electrical Specifications	298
Parallel Master Port Read Requirements	297
Parallel Master Port Write	298
Parallel Master Port Write Requirements	298
Parallel Slave Port Requirements	296
PLL Clock Timing	271
Analog-to-Digital Converter (ADC)	209
MPASM Assembler	254

В

Block Diagrams	
ADC Module	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
Core and Peripheral Modules 19	
CPU	
CTMU Configurations	
Time Measurement 227	
DMA	
I2C Circuit 174	
Input Capture 157	
Interrupt Controller63	
JTAG Programming, Debugging and Trace Ports 250	
Output Compare Module 161	
PMP Pinout and Connections to External Devices 189	
Reset System59	
RTCC 199	
SPI Module165	
Timer1143	
Timer2/3/4/5 (16-Bit)147	
Typical Multiplexed Port Structure 127	
UART	
WDT and Power-up Timer 153	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	

С

C Compilers	
MPLAB C18	
Charge Time Measurement Unit. See CTMU.	
Clock Diagram	74
Comparator	
Specifications	267, 268
Comparator Module	219
Comparator Voltage Reference (CVref	
Configuration Bit	
Configuring Analog Port Pins	128
CPU	
Architecture Overview	
Coprocessor 0 Registers	35

27, 33
341
341
341

D

DC and AC Characteristics	
Graphs and Tables	307
DC Characteristics	258
I/O Pin Input Specifications	263, 264
I/O Pin Output Specifications	265
Idle Current (IIDLE)	261
Power-Down Current (IPD)	262
Program Memory	
Temperature and Voltage Specifications	259
DC Characteristics (50 MHz)	302
Idle Current (IIDLE)	303
Power-Down Current (IPD)	303
Development Support	253
Direct Memory Access (DMA) Controller	83

Е

Electrical Characteristics	257
AC	269
Errata	16
External Clock	
Timer1 Timing Requirements	275
Timer2, 3, 4, 5 Timing Requirements	276
Timing Requirements	270
External Clock (50 MHz)	
Timing Requirements	304

F

Flash Program Memory	. 53
RTSP Operation	. 53

L

I/O Ports	127
Parallel I/O (PIO)	128
Write/Read Timing	128
Input Change Notification	128
Instruction Set	251
Inter-Integrated Circuit (I2C	173
Internal Voltage Reference Specifications	268
Internet Address	341
Interrupt Controller	63
IRG Vector and Bit Location	64

Μ

Memory Maps
PIC32MX110/210 Devices
(4 KB RAM, 16 KB Flash)
PIC32MX120/220 Devices
(8 KB RAM, 32 KB Flash) 39
PIC32MX130/230
(16 KB RAM, 256 KB Flash) 43
PIC32MX130/230 Devices
(16 KB RAM, 64 KB Flash) 40
PIC32MX150/250 Devices
(32 KB RAM, 128 KB Flash) 41
PIC32MX170/270