

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f064b-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Pin Diagrams

TABLE 3: **PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES**

28	28-PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)									
	1 SSOF	2	28	1 SC	DIC	28	1 S	PDIP	28	
	PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B PIC32MX150F128B PIC32MX170F256B									
Pin #	Full Pin Name		Pin #			Full Pin	Name			
1	MCLR		15	PGEC3/RPB	6/PMD6/R	RB6				
2	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0		16	TDI/RPB7/C	ED3/PMD	05/INT0/R	B7			
3	VREF-/CVREF-/AN1/RPA1/CTED2/RA1		17	TCK/RPB8/S	CL1/CTE	D10/PMD4	4/RB8			
4	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0		18	TDO/RPB9/S	DA1/CTE	D4/PMD3	/RB9			
5	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1		19	Vss						
6	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2		20	VCAP						
7			24							
	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3		21	PGED2/RPB	10/CTED1	1/PMD2/F	RB10			
8	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss		21	PGED2/RPB PGEC2/TMS	10/CTED1 /RPB11/PI	11/PMD2/F MD1/RB1	RB10 1			
8 9	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2		21 22 23	PGED2/RPB PGEC2/TMS AN12/PMD0/	10/CTED1 /RPB11/PI RB12	11/PMD2/F MD1/RB1 [,]	RB10 1			
8 9 10	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3		21 22 23 24	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13	10/CTED1 /RPB11/Pl RB12 /CTPLS/P	11/PMD2/F MD1/RB1 [,] PMRD/RB1	RB10 1 13			
8 9 10 11	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4		21 22 23 24 25	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI	10/CTED1 /RPB11/PI /RB12 /CTPLS/P N10/C3INE	I1/PMD2/F MD1/RB1 MRD/RB1 B/RPB14/S	RB10 1 13 SCK1/CTE	D5/PMW	R/RB14	
8 9 10 11 12	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4		21 22 23 24 25 26	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI AN9/C3INA/F	10/CTED1 /RPB11/PI RB12 /CTPLS/P N10/C3INE RPB15/SC	I1/PMD2/F MD1/RB1 PMRD/RB1 B/RPB14/S K2/CTED	RB10 1 13 SCK1/CTE 6/PMCS1/	D5/PMW RB15	R/RB14	
8 9 10 11 12 13	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VDD		21 22 23 24 25 26 27	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI AN9/C3INA/F AVSS	10/CTED1 /RPB11/PI RB12 /CTPLS/P N10/C3INE RPB15/SC	I1/PMD2/F MD1/RB1 PMRD/RB1 B/RPB14/S K2/CTED	RB10 1 13 SCK1/CTE 6/PMCS1/	ED5/PMW RB15	R/RB14	

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
23:16	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	—	—	-	—	_	—	
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	
7:0	_	BMX WSDRM	_	_	_	BMXARB<2:0>			

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-21 Unimplemented: Read as '0'

	Ommplemented. Read as 0
bit 20	BMXERRIXI: Enable Bus Error from IXI bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19	BMXERRICD: Enable Bus Error from ICD Debug Unit bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18	BMXERRDMA: Bus Error from DMA bit
	 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17	BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16	BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
	 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access
bit 15-7	Unimplemented: Read as '0'
bit 6	BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
	 1 = Data RAM accesses from CPU have one wait state for address setup 0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3	Unimplemented: Read as '0'
bit 2-0	BMXARB<2:0>: Bus Matrix Arbitration Mode bits
	111 = Reserved (using these Configuration modes will produce undefined behavior)
	•
	•
	011 = Reserved (using these Configuration modes will produce undefined behavior)010 = Arbitration Mode 2
	001 = Arbitration Mode 1 (default) 000 = Arbitration Mode 0

8.1 Oscillator Control Regiters

ТАВ	LE 8-1:	1: OSCILLATOR CONTROL REGISTER MAP																	
ess		ė									Bits								s
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OSCCON	31:16	— — PLLODIV<2:0>			F	FRCDIV<2:0> — S		SOSCRDY	DY PBDIVRDY PBDIV<1:0>		PLLMULT<2:0>		>	x1xx(2)				
FUUU	USCCON	15:0	—		COSC<2:0)>	_		NOSC<2:0	>	CLKLOCK	ULOCK ⁽³⁾	SLOCK	SLPEN	CF	UFRCEN ⁽³⁾	SOSCEN	OSWEN	xxxx(2)
E010		31:16	_	_			_	_			_	_	_	_	—	_		_	0000
1 0 10	030101	15:0	_	_			_	_			_	_			TUN	\< 5:0>			0000
F000		31:16	_								RODIV<1	4:0>							0000
F020	REFUCUN	15:0	ON		SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	-				ROSE	L<3:0>		0000
F030	DEEOTDIM	31:16				F	OTRIM<8:	0>				_	_	_	_	_		_	0000
	REFUTRIM	15:0	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

3: This bit is only available on PIC32MX2XX devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10	—	—	—	—	—	—	—	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	—	—	—	—	—	—	
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
7:0					RDWR	[DMACH<2:0>		

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24	DMAADDR<31:24>									
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:10	DMAADDR<23:16>									
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	DMAADDR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				DMAADD	R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	
31:24	—	—	BYTC)<1:0>	WBO ⁽¹⁾	—	—	BITO	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:10	—	—	—	—	—	—	—	_	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—			PLEN<4:0>			
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	—	_	(CRCCH<2:0>		

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CHSSIZ<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		CHSSIZ<7:0>									

REGISTER 9-12: DCHxSSIZ: DMA CHANNEL 'x' SOURCE SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

REGISTER 9-13: DCHxDSIZ: DMA CHANNEL 'x' DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	—	—	—	—	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	CHDSIZ<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7.0		CHDSIZ<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ISTATE	SEO	PKTDIS ⁽⁴⁾	LISBDST		DESIME(3)	DDBDST	USBEN ⁽⁴⁾
	JUNATE	520	TOKBUSY ^(1,5)	000001	TIOSTEIN"	INCOUNEY /		SOFEN ⁽⁵⁾

REGISTER 10-11: U1CON: USB CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE was detected on the USB
 - 0 = No JSTATE was detected on the
- bit 6 **SE0:** Live Single-Ended Zero flag bit 1 = Single-Ended Zero was detected on the USB
 - 0 = No Single-Ended Zero was detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing is disabled (set upon SETUP token received)
 - 0 = Token and packet processing is enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token is being executed by the USB module
 - 0 = No token is being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated
- bit 3 HOSTEN: Host Mode Enable bit⁽²⁾
 - 1 = USB host capability is enabled
 - 0 = USB host capability is disabled
- bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

REGISTER 10-11: U1CON: USB CONTROL REGISTER (CONTINUED)

- bit 1 **PPBRST:** Ping-Pong Buffers Reset bit
 - 1 = Reset all Even/Odd buffer pointers to the EVEN Buffer Descriptor banks
 - 0 = Even/Odd buffer pointers are not Reset
- bit 0 USBEN: USB Module Enable bit⁽⁴⁾
 - 1 = USB module and supporting circuitry is enabled
 - 0 = USB module and supporting circuitry is disabled

SOFEN: SOF Enable bit⁽⁵⁾

- 1 = SOF token is sent every 1 ms
- 0 = SOF token is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 10-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS										В	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5404		31:16	-	—	-	-	-	—	—	—	-	—	—	—	—	—	-	—	0000
FA04	INTIR	15:0	_	_	_	—	_	_	_	—	_	_	_	_		INT1F	R<3:0>		0000
EVUS		31:16		—	_	—	—	_	_	_		—	_	_	_	_	—		0000
FAUO	INTZR	15:0	_	—	—	—	—	—	—	—	_	—	—	_		INT2F	R<3:0>		0000
EAOC		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
TAUC	INTOK	15:0	_	_				_	—		_	_	_	_		INT3F	R<3:0>		0000
EA10		31:16	_	_				_	—		_	_	_	_	_	—	—	_	0000
1710		15:0	_	—	—	—	—	—	—	—	—	—	—	—		INT4F	R<3:0>		0000
FA18	T2CKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17(10	120101	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T2CK	R<3:0>		0000
FA1C	T3CKR	31:16	_	—	—	—	—	—	—	—	-	—	—	—	—		—	—	0000
TAIC	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T3CK	R<3:0>		0000
EA20	TACKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1720	140111	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T4CK	R<3:0>		0000
EA24		31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1724	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T5CK	R<3:0>		0000
EA28		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1 A20	ICIK	15:0	_	_	—			_	_		_	_	_			IC1R	<3:0>		0000
FA2C	IC2P	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1720	10211	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
EA30	IC3P	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
EA34		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17.04		15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
EA38		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1740		15:0	—	—	—	—	—	—	—	—	—	—	—	—		OCFA	R<3:0>		0000
FAAC	OCEBR	31:16	_	—	—	_	_	—	—	_	_	—	—	—	—	—	—	—	0000
1740		15:0	_	—	—	—	—	—	—	—	_	—	—	—	OCFBR<3:0> 00			0000	
EA 50		31:16	_	_	-	—	-	—	—	—	_	_	—	—	—	—	—	—	0000
FA5U	UIKAR	15:0	_	_	-	-		_	_	_	_	_	_	—		U1RX	R<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES:

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0 U-0		U-0	U-0	R/W-0			
31:24			—	_	—	_	_	ADM_EN			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	ADDR<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1			
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT			
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0			
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

- bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
 - 11 = Reserved, do not use
 - 10 = Interrupt is generated and asserted while the transmit buffer is empty
 - 01 = Interrupt is generated and asserted when all characters have been transmitted
 - 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 **UTXINV:** Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 URXEN: Receiver Enable bit
 - 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1).
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by port.
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 TRMT: Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	_	—	-
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:10	—	—	—	MONTH10		MONTH	01<3:0>	
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	—	—	DAY1	0<1:0>		DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
7:0	_	_	_	_	_	V	VDAY01<2:0:	>

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess											Bits								\$
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F0.40		31:16	—	—	_	_	—	_	_	—	_	_	_		_	—		—	0000
F240	FIVIDI	15:0	_	_		CVRMD	_		_	CTMUMD	—	_			_	-		AD1MD	0000
5050		31:16	_	-			_		_	—	_	_			_	-		_	0000
F230	FIVIDZ	15:0	_	_	_	_	—	_	_	—	_	—	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
E260	PMD3	31:16	—	—	_	_	—	_	—	—	—	—	-	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	T WID5	15:0	—	—	_	_	—	_	—	—	—	—	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	—	—	_	_	—	_	—	—	—	—	-	_	—	—	-	—	0000
F270		15:0	—	—	_	_	—	_	—	—	—	—	-	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	—	—	_	_	—	_	—	USB1MD	—	—	-	_	—	—	I2C1MD	I2C1MD	0000
F200	T WID5	15:0	—	—	_	_	—	_	SPI2MD	SPI1MD	—	—	-	_	—	—	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	—	_	_	-	_	_	_	-	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	—	_	_	-	_	_	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

28.0 INSTRUCTION SET

The PIC32MX1XX/2XX family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "*MIPS32*[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

30.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX 28/36/44-pin Family AC characteristics and timing parameters.

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

АС СНА	RACTERI	STICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
DO56	Сю	All I/O pins and OSC2		_	50	pF	EC mode		
DO58	Св	SCLx, SDAx	— — 400 pF In I ² C mode						

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-2: EXTERNAL CLOCK TIMING

TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3):2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions				
CTMU CURRENT SOURCE											
CTMUI1	IOUT1	Base Range ⁽¹⁾	_	0.55		μA	CTMUCON<9:8> = 01				
CTMUI2	IOUT2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUCON<9:8> = 10				
CTMUI3	IOUT3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11				
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550	_	μA	CTMUCON<9:8> = 00				
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)		0.598	—	V	TA = +25°C, CTMUCON<9:8> = 01				
				0.658	—	V	TA = +25°C, CTMUCON<9:8> = 10				
			_	0.721	_	V	TA = +25°C, CTMUCON<9:8> = 11				
CTMUFV2	VFVR	Temperature Diode Rate of Change ^(1,2)	—	-1.92		mV/ºC	CTMUCON<9:8> = 01				
			—	-1.74	_	mV/ºC	CTMUCON<9:8> = 10				
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11				

Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

33.2 Package Details

This section provides the technical details of the packages.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Number of Pins	N	28			
Pitch	е	0.65 BSC			
Overall Height		-	-	2.00	
Molded Package Thickness		1.65	1.75	1.85	
Standoff	A1	0.05	—	—	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness		0.09	-	0.25	
Foot Angle		0°	4°	8°	
Lead Width		0.22	_	0.38	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch E 0.65 BSC				
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A