

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f064bt-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			_0,0	Rem	annah	le Pe	rinhe	rals			/		1				1	l	1
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	I ² C	dWd	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels	RTCC	I/O Pins	JTAG	Packages
PIC32MX110F016B	28	16+3	4	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX110F016C	36	16+3	4	24	5/5/5	2	2	5	3	Ν	2	Υ	4/0	Y	12	Y	25	Y	VTLA
PIC32MX110F016D	44	16+3	4	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX120F032B	28	32+3	8	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX120F032C	36	32+3	8	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX120F032D	44	32+3	8	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F064B	28	64+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F064C	36	64+3	16	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX130F064D	44	64+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX150F128B	28	128+3	32	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX150F128C	36	128+3	32	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX150F128D	44	128+3	32	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F256B	28	256+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F256D	44	256+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX170F256B	28	256+3	64	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX170F256D	44	256+3	64	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN

TABLE 1: PIC32MX1XX 28/36/44-PIN GENERAL PURPOSE FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

TABLE 4:PIN NAMES FOR 28-PIN USB DEVICES

28	PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)					
	1 SSOP	28	1 SOIC	28	1	28 SPDIP
	PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B					
Pin #	Full Pin Name	Pin #		Full Pin N	Name	
Pin #	Full Pin Name	Pin #	VBUS	Full Pin N	Name	
Pin # 1 2	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	Pin # 15 16	VBUS TDI/RPB7/CTED3/PM	Full Pin N	Name	
Pin # 1 2 3	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	Pin # 15 16 17	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE	Full Pin N D5/INT0/RE	Name 37 /RB8	
Pin # 1 2 3 4	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	Pin # 15 16 17 18	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	Pin # 15 16 17 18 19	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	Pin # 15 16 17 18 19 20	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6 7	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	Pin # 15 16 17 18 19 20 21	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss	Pin # 15 16 17 18 19 20 21 21 22	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9 10	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I TED11/RB10 11 PMRD/RB13	Name 37 /RB8 RB9 0 3	
Pin # 1 2 3 4 5 6 7 8 9 10 11	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	Pin # 15 16 17 18 19 20 21 22 23 24 25	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/I CVREFOUT/AN10/C3IN	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10 11 IB/RPB14/V	Name 37 /RB8 RB9 0 3 /BUSON/S	SCK1/CTED5/RB14
Pin # 1 2 3 4 5 6 7 8 9 10 11 12	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/f CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB11 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 5/PMCS1	SCK1/CTED5/RB14 1/RB15
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VpD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC AVSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB13 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 6)/PMCS1	SCK1/CTED5/RB14 1/RB15

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

NOTES:

6.1 Reset Control Registers

TABLE 6-1: RESET CONTROL REGISTER MAP

ess				Bits														ú	
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
E600	BCON	31:16	—	—	_	—	—	—	—	—	—	_	_	—	—	_	—	—	0000
FOUU	RCON	15:0	—	_	—	—	_	-	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx(2)
E610	DOMIDET	31:16	—	_	—	—	_	-	—	—	—	—	—	_	—	_	_	—	0000
1 010	NOWRO1	15:0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess										В	its								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	_	—	_	-	—	—	_	—	_	—	—	—	—	—	_	—	0000
3280	DCH2CPTR	15:0								CHCPT	R<15:0>								0000
	DOUISDAT	31:16	_	_	_	_	_	_		_	_		_	_	_	_	_	_	0000
3290	DCH2DAI	15:0			_	_				_		•	•	CHPDA	T<7:0>	•	•		0000
	DOUGOON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
32A0	DCH3CON	15:0	CHBUSY	_	_	_	—	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3280		31:16	—		—	_				—				CHAIR	Q<7:0>				00FF
5260	DCHIJECON	15:0				CHSIR	Q<7:0>	-			CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FF00
3200	DCH3INT	31:16	—		—	—			—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0200	Donoin	15:0	—	—	—	—	—	—		—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
32E0	DCH3DSA	31:16 15:0								CHDSA	A<31:0>								0000
		31:16	_	_	_	_	—	_	_	_	_	_	_	_	_	—	_	_	0000
32F0	DCH3SSIZ	15:0								CHSSIZ	Z<15:0>								0000
2200		31:16	_	_	—	—	_	_	_	_	_	_	_	_	_	—	_		0000
3300	DCH3DSIZ	15:0								CHDSI	Z<15:0>								0000
3310	оснаертр	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
5510	Densor IIX	15:0								CHSPT	R<15:0>								0000
3320	DCH3DPTR	31:16	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	0000
0020	BOHODI III	15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—		—	—	—	—		—	—	—	—	—	—	—	_	—	0000
		15:0								CHCSI	Z<15:0>								0000
3340	DCH3CPTR	31:16	—	_	—	—	_	_	—	-		—	_	_		—	_		0000
		15:0								CHCPT	K<15:0>								0000
3350	DCH3DAT	31:16	_		_	_	_	_		_	_	_	_			—	_		0000
		15.0	_	_	_	_			_					CHPDA	11-1.02				0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

		• · · · · · • · ·						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	-	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_		_	_		—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_		_	_		—	_
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾		USUSPEND	USBPWR

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Note 1: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		¢,									Bits								6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000		31:16	_	_	-	_	-	-	_	_	—	_	_	_	—	_	_	_	0000
0000	WDICON	15:0	ON	_	_	_	—	_	_	_	_		SI	VDTPS<4:	0>		WDTWINEN	WDTCLR	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽²⁾ 11111111 = Alarm will trigger 256 times

> 00000000 = Alarm will trigger one time The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

24.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the module is shown in Figure 24-1.

26.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/36/44-pin
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 10. "Power-
	Saving Features" (DS60001130), which
	is available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX1XX/2XX 28/36/44-pin Family. The PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

26.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers
- LPRC Run mode: the CPU is clocked from the LPRC clock source
- Sosc Run mode: the CPU is clocked from the Sosc clock source

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

26.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as follows:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

26.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

26.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 26.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

28.0 INSTRUCTION SET

The PIC32MX1XX/2XX family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "*MIPS32*[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS	5	Standard Op (unless other Operating terr	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Typical ⁽³⁾	Max.	Units	Co	nditions						
Operating (Current (IDD)	(Notes 1, 2, 5))								
DC20	2	3	mA	4 MH	lz (Note 4)						
DC21	7	10.5	mA	1	0 MHz						
DC22	10	15	mA	20 Mł	Hz (Note 4)						
DC23	15	23	mA	30 MI	Hz (Note 4)						
DC24	20	30	mA 40 MHz								
DC25	100	150	μA	+25°C, 3.3V	LPRC (31 kHz) (Note 4)						

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, Program Flash, and SRAM data memory are operational, SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
 - · WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAI	RACTERIS	STICS	Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industr $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-tem					l
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Tir	ne		5	15	ns	Vdd < 2.5V
					5	10	ns	VDD > 2.5V
DO32	TIOF	Port Output Fall Tim	e		5	15	ns	VDD < 2.5V
					5	10	ns	VDD > 2.5V
DI35	TINP	INTx Pin High or Lo	w Time	10	—		ns	—
DI40	Trbp	CNx High or Low Ti	me (input)	2	_	_	TSYSCLK	_

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА		TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—		ns				
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2		_	ns	—			
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32			
SP21	TscR	SCKx Output Rise Time (Note 4)	_		_	ns	See parameter DO31			
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—		ns	See parameter DO32			
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31			
SP35	TscH2doV,	SDOx Data Output Valid after	_		15	ns	VDD > 2.7V			
	TscL2DoV	SCKx Edge	_		20	ns	VDD < 2.7V			
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	—		ns	—			
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	15		_	ns	VDD > 2.7V			
	TDIV2scL	SCKx Edge	20	—	_	ns	VDD < 2.7V			
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15	—	_	ns	VDD > 2.7V			
	TscL2DIL	to SCKx Edge	20	—	_	ns	VDD < 2.7V			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$			
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration	
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC	
Up to 400 ksps	200 ns	200 ns	5.0 κΩ	2.5V to 3.6V	ANX CHX ANX CHX ANX OF VREF-	

TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

33.1 Package Marking Information (Continued)

44-Lead VTLA

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (
		can be found on the outer packaging for this package.
Note:	If the full N line, thus	Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
D	imension Limits	MIN	NOM	MAX	
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	А		_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section	Update Description			
4.0 "Memory Organization"	Added Memory Maps for the new devices (see Figure 4-3 and Figure 4-4).			
	Removed the BMXCHEDMA bit from the Bus Matrix Register map (see Table 4-1).			
	Added the REFOTRIM register, added the DIVSWEN bit to the REFOCON registers, added Note 4 to the ULOCK and SOSCEN bits and added the PBDIVRDY bit in the OSCCON register in the in the System Control Register map (see Table 4-16).			
	Removed the ALTI2C1 and ALTI2C2 bits from the DEVCFG3 register and added Note 1 to the UPLLEN and UPLLIDIV<2:0> bits of the DEVCFG2 register in the Device Configuration Word Summary (see Table 4-17).			
	Updated Note 1 in the Device and Revision ID Summary (see Table 4-18).			
	Added Note 2 to the PORTA Register map (see Table 4-19).			
	Added the ANSB6 and ANSB12 bits to the ANSELB register in the PORTB Register map (see Table 4-20).			
	Added Notes 2 and 3 to the PORTC Register map (see Table 4-21).			
	Updated all register names in the Peripheral Pin Select Register map (see Table 4-23).			
	Added values in support of new devices (16 KB RAM and 32 KB RAM) in the Data RAM Size register (see Register 4-5).			
	Added values in support of new devices (64 KB Flash and 128 KB Flash) in the Data RAM Size register (see Register 4-5).			
8.0 "Oscillator Configuration"	Added Note 5 to the PIC32MX1XX/2XX Family Clock Diagram (see Figure 8-1).			
	Added the PBDIVRDY bit and Note 2 to the Oscillator Control register (see Register 8-1).			
	Added the DIVSWEN bit and Note 3 to the Reference Oscillator Control register (see Register 8-3).			
	Added the REFOTRIM register (see Register 8-4).			
21.0 "10-bit Analog-to-Digital	Updated the ADC1 Module Block Diagram (see Figure 21-1).			
Converter (ADC)"	Updated the Notes in the ADC Input Select register (see Register 21-4).			
24.0 "Charge Time Measurement	Updated the CTMU Block Diagram (see Figure 24-1).			
	Added Note 3 to the CTMU Control register (see Register 24-1)			
26.0 "Special Features"	Added Note 1 and the PGEC4/PGED4 pin pair to the ICESEL<1:0> bits in DEVCFG0: Device Configuration Word 0 (see Register 26-1).			
	Removed the ALTI2C1 and ALTI2C2 bits from the Device Configuration Word 3 register (see Register 26-4).			
	Removed 26.3.3 "Power-up Requirements".			
	Added Note 3 to the Connections for the On-Chip Regulator diagram (see Figure 26-2).			
	Updated the Block Diagram of Programming, Debugging and Trace Ports diagram (see Figure 26-3).			

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support