

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f064bt-v-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
	NVMKEY<31:24>									
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
23:10	NVMKEY<23:16>									
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
15:8	NVMKEY<15:8>									
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
				NVMK	EY<7:0>					

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	NVMADDR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	NVMADDR<23:16>									
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	NVMADDR<15:8>									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				NVMA	DR<7:0>					

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

TABLE 7-2: INTERRUPT REGISTER MAP (CONTINUED)

ess		ø		Bits															
Virtual Add (BF88_#	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1100		31:16	—	—	—	SPI1IP<2:0>		SPI1IS	<1:0>	—	—	—	USBIP<2:0>(2)		:)	USBIS	<1:0> (2)	0000	
1100	IPC/	15:0	-	—	_	(CMP3IP<2:0>		CMP3IS	6<1:0>	-	_		CMP2IP<2:0>		CMP2I	S<1:0>	0000	
1110		31:16		—	_		PMPIP<2:0>		PMPIS	<1:0>	_			CNIP<2:0>			CNIS	<1:0>	0000
1110	IFCO	15:0	-	_	-		I2C1IP<2:0>		I2C1IS	<1:0>	_		-	U1IP<2:0>		U1IS	<1:0>	0000	
1120		31:16	-	—	_	(CTMUIP<2:0	>	CTMUIS	S<1:0>	-	_		I2C2IP<2:0>		12C215	6<1:0>	0000	
1120	IFC9	15:0		—	_		U2IP<2:0>		U2IS<	U2IS<1:0> —		_		SPI2IP<2:0>			SPI2IS	6<1:0>	0000
1120		31:16	—	—	—	[DMA3IP<2:0>		DMA3IS	DMA3IS<1:0> —		—	_	DMA2IP<2:0>		•	DMA2I	S<1:0>	0000
1130	IPC10	15:0	_	_	_	[DMA1IP<2:0>	>	DMA1IS	DMA1IS<1:0> —		_	—	DMA0IP<2:0>		•	DMA0I	S<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTE										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	_	—	—	—	—		
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
23.10	CHAIRQ<7:0> ⁽¹⁾									
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
10.0	CHSIRQ<7:0> ⁽¹⁾									
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN					

CISTER 0-8. CIETED

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit

bit

bit

bit

bit

bit

31-24	Unimplemented. Read as 0
23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	•
	00000001 = Interrupt 0 will initiate a DMA transfer
7	CEORCE: DMA Forced Transfer bit
1	
	 1 = A DMA transfer is forced to begin when this bit is written to a '1' 0 = This bit always reads '0'
6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

- - 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHSPTR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				CHSPTF	R<7:0>					

REGISTER 9-14: DCHxSPTR: DMA CHANNEL 'x' SOURCE POINTER REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 9-15: DCHxDPTR: DMA CHANNEL 'x' DESTINATION POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		—	—	—	—		—	_		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		—	—	—	—		—	_		
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	CHDPTR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				CHDPTF	R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16	Unimplemented: Read as '0'
-----------	----------------------------

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 18-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	HC = Cleared in Hardware	e	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** I²C Enable bit⁽¹⁾

bit 12

- 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
- 0 = Disables the I^2C module; all I^2C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock
 - 0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTE	R 18-1:	I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	GCEN: Ge	neral Call Enable bit (when operating as I ² C slave)
	1 = Enable (module)	interrupt when a general call address is received in the I2CxRSR e is enabled for reception)
	0 = Genera	al call address is disabled
bit 6	STREN: S	CLx Clock Stretch Enable bit (when operating as I ² C slave)
	Used in co	njunction with SCLREL bit.
	1 = Enable	software or receive clock stretching
b:+ F		$\frac{1}{2}$ solution of the constant of $\frac{1}{2}$ constant of the during sector receives
DILS	ACKDI: A	is transmitted when the software initiates on Asknowledge assumes
	1 = Send a	ACK during an Acknowledge sequence
	0 = Send a	an ACK during an Acknowledge sequence
bit 4	ACKEN: A receive)	cknowledge Sequence Enable bit (when operating as I ² C master, applicable during maste
	1 = Initiate Hardwa 0 = Acknow	Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. are clear at end of master Acknowledge sequence. wledge sequence not in progress
bit 3	RCEN: Re	ceive Enable bit (when operating as I ² C master)
	1 = Enable 0 = Receiv	s Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. re sequence not in progress
bit 2	PEN: Stop	Condition Enable bit (when operating as I ² C master)
	1 = Initiate 0 = Stop co	Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. ondition not in progress
bit 1	RSEN: Re	peated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate master	Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of Repeated Start sequence.
	0 = Repeat	ted Start condition not in progress
bit 0	SEN: Start	Condition Enable bit (when operating as I ² C master)
	1 = Initiate 0 = Start co	Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. ondition not in progress

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

19.1 UART Control Registers

TABLE 19-1: UART1 AND UART2 REGISTER MAP

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000		31:16			—	—	—			—		_					—		0000
0000	OTWODE	15:0	ON	_	SIDL	IREN	RTSMD	-	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6010	111STA(1)	31:16	-	—	—	—	—	-	_	ADM_EN				ADDF	R<7:0>				0000
0010	UIUIA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020		31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0020	UTIXILO	15:0	-	—	—	—	—	-	_				Tra	insmit Regi	ster				0000
6030		31:16		_	—	_	_		_	_		_			_	_	_	_	0000
0000	UIIVILO	15:0	-	—	—	—	—	-	_				Re	ceive Regis	ster				0000
6040		31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0040	OTBICO	15:0							Bau	d Rate Gen	erator Pres	caler					-		0000
6200	112MODE(1)	31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0200	02INIODE.	15:0	ON	—	SIDL	IREN	RTSMD	_	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6210	112STA(1)	31:16	_	—	—			_	—	ADM_EN				ADDF	R<7:0>		-		0000
0210	02017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	LI2TXREG	31:16	_	—	—			_	—	—	_	—	—		—	—	—	—	0000
0220	02TAILO	15:0	_		_	_	_	_	_				Tra	insmit Regi	ster				0000
6230		31:16	-	—	—	—	—	-	_	_	_	—	-	-	—	—	—	—	0000
0230	OZIVAREO	15:0	_		_	_	_	_	_				Re	ceive Regis	ster				0000
6240	U2BRG(1)	31:16	_	—	—			—	—	—	_	—	—	_	—	—		—	0000
52-70	OZDINO.	15:0							Bau	d Rate Gen	erator Pres	caler							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

20.1 PMP Control Registers

TABLE 20-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								Bi	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	DMCON	31:16		_	—	—	—	—	—	—		—	—			—	_	—	0000
7000	FINCON	15:0	ON	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	_	CS1P	—	WRSP	RDSP	0000
7010		31:16	—	_	—	—	_	_	_	—	_	—	_	_	_	_	_	—	0000
7010	PININODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	_	MODE	MODE<1:0> WAITB<1:0>				WAITN	WAITE<1:0>		0000		
		31:16	—	_	_	—	_	_	_	_	_	—	_	_	_	—	_	—	0000
7020	PMADDR	45.0		CS1															0000
		15:0	_	ADDR14	_	_	_					/	ADDR<10:0	>					
7000		31:16								DATAOU	T -04-05								0000
7030	PIVIDOUT	15:0								DATAOU	1<31.0>								0000
7040		31:16									1-21:05								0000
7040	PIVIDIN	15:0		DATAIN<31:0>															
7050		31:16	_	_	_	—	_	_	-	_	_	_	-	_	_	-	_	_	0000
7050	PMAEN	15:0	_	PTEN14	_	_	_						PTEN<10:0	>					0000
7000	DMOTAT	31:16		_	_	_	_	_	—	—	_	—	—	_	—	—	_	_	0000
1060	PINSTAL	15:0	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	CAL<9):8>
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10				CAL<	:7:0>			
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	—	SIDL	_	—	—	—	—
7.0	R/W-0 R-0		U-0	U-0	R/W-0	R-0	R-0	R/W-0
7:0 RTSECSEL ⁽³		RTCCLKON	—	—	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when the device enters Idle mode 0 = Continue normal operation when the device enters Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

© 2011-2016 Microchip Technology Inc.

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED) bit 24 EDG1STAT: Edge1 Status bit Indicates the status of Edge1 and can be written to control edge source 1 = Edge1 has occurred 0 = Edge1 has not occurred EDG2MOD: Edge2 Edge Sampling Select bit bit 23 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 22 EDG2POL: Edge 2 Polarity Select bit 1 = Edge2 programmed for a positive edge response 0 = Edge2 programmed for a negative edge response bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = C3OUT pin is selected 1110 = C2OUT pin is selected 1101 = C1OUT pin is selected 1100 = PBCLK clock is selected 1011 = IC3 Capture Event is selected 1010 = IC2 Capture Event is selected 1001 = IC1 Capture Event is selected 1000 = CTED13 pin is selected 0111 = CTED12 pin is selected 0110 = CTED11 pin is selected 0101 = CTED10 pin is selected 0100 = CTED9 pin is selected 0011 = CTED1 pin is selected 0010 = CTED2 pin is selected 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected bit 17-16 Unimplemented: Read as '0' bit 15 **ON:** ON Enable bit 1 = Module is enabled 0 = Module is disabled bit 14 Unimplemented: Read as '0' bit 13 CTMUSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when the device enters Idle mode 0 = Continue module operation when the device enters Idle mode TGEN: Time Generation Enable bit⁽¹⁾ bit 12 1 = Enables edge delay generation 0 = Disables edge delay generation bit 11 EDGEN: Edge Enable bit 1 = Edges are not blocked 0 = Edges are blocked

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess											Bits								\$
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F0.40		31:16	—	—	_	_	—	_	_	—	_	_	_		_	—		—	0000
F240	FIVIDI	15:0	_	_		CVRMD	_		_	CTMUMD	—	_			_	-		AD1MD	0000
5050		31:16	_	-			_		_	—	_	_			_	-		_	0000
F230	FIVIDZ	15:0	_	_	_	_	—	_	_	—	_	—	_	_	_	CMP3MD	CMP2MD	CMP1MD	0000
E260	PMD3	31:16	—	—	_	_	—	_	—	—	—	—	-	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	T WID5	15:0	—	—	_	_	—	_	—	—	—	—	-	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
E270		31:16	—	—	_	_	—	_	—	—	—	—	-	_	—	—	-	—	0000
F270		15:0	—	—	_	_	—	_	—	—	—	—	-	T5MD	T4MD	T3MD	T2MD	T1MD	0000
E200		31:16	—	—	_	_	—	_	—	USB1MD	—	—	-	_	—	—	I2C1MD	I2C1MD	0000
F200	T WID5	15:0	—	—	_	_	—	_	SPI2MD	SPI1MD	—	—	-	_	—	—	U2MD	U1MD	0000
E200	PMD6	31:16	_	_	_	_	_	_	_	—	_	_	-	_	_	_	-	PMPMD	0000
F290		15:0	_	_	_	_	_	_	_	—	_	_	-	_	_	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 18-10 **PWP<8:0>:** Program Flash Write-Protect bits⁽³⁾

	Prevents selected program Flash memory pages from being modified during code execution.
	<pre>11111111 = Disabled 11111111 = Memory below 0x0400 address is write-protected 111111101 = Memory below 0x0800 address is write-protected 11111100 = Memory below 0x0C00 address is write-protected 111111011 = Memory below 0x1000 (4K) address is write-protected 111111010 = Memory below 0x1400 address is write-protected 111111001 = Memory below 0x1800 address is write-protected 111111000 = Memory below 0x1C00 address is write-protected 111111011 = Memory below 0x2000 (8K) address is write-protected</pre>
	111110110 = Memory below 0x2400 address is write-protected 111110101 = Memory below 0x2800 address is write-protected 111110100 = Memory below 0x2C00 address is write-protected 111110011 = Memory below 0x3000 address is write-protected
	111110010 = Memory below 0x3400 address is write-protected 111110001 = Memory below 0x3800 address is write-protected 11110000 = Memory below 0x3C00 address is write-protected 111101111 = Memory below 0x4000 (16K) address is write-protected
	110111111 = Memory below 0x10000 (64K) address is write-protected
	101111111 = Memory below 0x20000 (128K) address is write-protected
	<pre>. 011111111 = Memory below 0x40000 (256K) address is write-protected .</pre>
	00000000 = All possible memory is write-protected
bit 9-5	Reserved: Write '1'
bit 4-3	ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits ⁽²⁾ 11 = PGEC1/PGED1 pair is used 10 = PGEC2/PGED2 pair is used 01 = PGEC3/PGED3 pair is used 00 = PGEC4/PGED4 pair is used ⁽²⁾
bit 2	JTAGEN: JTAG Enable bit ⁽¹⁾ 1 = JTAG is enabled 0 = JTAG is disabled
bit 1-0	DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) 1x = Debugger is disabled 0x = Debugger is enabled
Note 1: 2:	This bit sets the value for the JTAGEN bit in the CFGCON register. The PGEC4/PGED4 pin pair is not available on all devices. Refer to the " Pin Diagrams " section for availability.

3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

27.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX 28/36/44-pin Family devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX 28/36/44-pin Family family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 30.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

27.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

27.3.2 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX 28/36/44-pin Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 30.1 "DC Characteristics"**.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

27.4 **Programming and Diagnostics**

PIC32MX1XX/2XX 28/36/44-pin Family devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

Figure 27-2 illustrates a block diagram of the programming, debugging, and trace ports.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Condition					
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns		
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31	
SP35	TscH2doV, TscL2doV	cH2DoV, SDOx Data Output Valid after cL2DoV SCKx Edge	_		15	ns	VDD > 2.7V	
			_	_	20	ns	VDD < 2.7V	
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	15	—	-	ns	—	
SP40	TDIV2scH, TDIV2scL	, Setup Time of SDIx Data Input to SCKx Edge	15	_	_	ns	VDD > 2.7V	
			20	—		ns	VDD < 2.7V	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	15	—	_	ns	VDD > 2.7V	
			20	—	—	ns	VDD < 2.7V	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.3V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \ for \ V-temp \end{array}$					
Param. No.	Symbol	Characteristics		Min. ⁽¹⁾ Max.		Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	_	μs	—		
			400 kHz mode	Трв * (BRG + 2)	_	μs	—		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	_		
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)	—	μS	—		
			400 kHz mode	Трв * (BRG + 2)	—	μS	—		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode (Note 2)	_	100	ns			
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode (Note 2)	—	300	ns			
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns			
			400 kHz mode	100	—	ns			
			1 MHz mode (Note 2)	100	—	ns			
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	—		
			400 kHz mode	0	0.9	μS			
			1 MHz mode (Note 2)	0	0.3	μS			
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)		μS	Only relevant for		
		Setup Time	400 kHz mode	Трв * (BRG + 2)	—	μS	Repeated Start		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs			
IM31	Thd:sta	Start Condition Hold Time	100 kHz mode	Трв * (BRG + 2)		μs	After this period, the		
			400 kHz mode	Трв * (BRG + 2)	—	μS	first clock pulse is		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	generaleu		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	Трв * (BRG + 2)		μS	_		
			400 kHz mode	Трв * (BRG + 2)		μs			
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—		
		Hold Time	400 kHz mode	Трв * (BRG + 2)		ns			
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	ns			

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

TABLE 31-5: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Conditions		
MOS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		50 50	MHz MHz	EC (Note 2) ECPLL (Note 1)	

Note 1: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 31-6:SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	m. Symbol Characteristics			Typical	Max.	Units	Conditions	
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2	—	—	ns	_	
MSP11	TscH	SCKx Output High Time (Note 1,2)	Тѕск/2	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

TABLE 31-7: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2	—	_	ns	—	
MSP11	TscH	SCKx Output High Time (Note 1,2)	Tsck/2	—	—	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.