

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f064d-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			_0,0	Rem	annah	le Pe	rinhe	rals			/		1				1	l	1
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	I ² C	dWd	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels	RTCC	I/O Pins	JTAG	Packages
PIC32MX110F016B	28	16+3	4	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX110F016C	36	16+3	4	24	5/5/5	2	2	5	3	Ν	2	Υ	4/0	Y	12	Y	25	Y	VTLA
PIC32MX110F016D	44	16+3	4	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX120F032B	28	32+3	8	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX120F032C	36	32+3	8	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX120F032D	44	32+3	8	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F064B	28	64+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F064C	36	64+3	16	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX130F064D	44	64+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX150F128B	28	128+3	32	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX150F128C	36	128+3	32	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX150F128D	44	128+3	32	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F256B	28	256+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F256D	44	256+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX170F256B	28	256+3	64	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX170F256D	44	256+3	64	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN

TABLE 1: PIC32MX1XX 28/36/44-PIN GENERAL PURPOSE FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

Pin Diagrams

TABLE 3: **PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES**

28	-PIN SOIC, SPDIP, SSOP (TOP VIEW) ^{(1,2,3})							
	1 SSOF	2	28	1 SC	DIC	28	1 S	PDIP	28
	PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B PIC32MX150F128B PIC32MX170F256B								
Pin #	Full Pin Name		Pin #			Full Pin	Name		
1	MCLR		15	PGEC3/RPB	6/PMD6/R	RB6			
2	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0		16	TDI/RPB7/C	ED3/PMD	05/INT0/R	B7		
3	VREF-/CVREF-/AN1/RPA1/CTED2/RA1		17	TCK/RPB8/S	CL1/CTE	D10/PMD4	4/RB8		
4	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0		18	TDO/RPB9/S	DA1/CTE	D4/PMD3	/RB9		
5	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1		19	Vss					
6	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2		20	VCAP					
7			24						
	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3		21	PGED2/RPB	10/CTED1	1/PMD2/F	RB10		
8	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss		21	PGED2/RPB PGEC2/TMS	10/CTED1 /RPB11/PI	11/PMD2/F MD1/RB1	RB10 1		
8 9	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2		21 22 23	PGED2/RPB PGEC2/TMS AN12/PMD0/	10/CTED1 /RPB11/PI RB12	11/PMD2/F MD1/RB1 [,]	RB10 1		
8 9 10	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3		21 22 23 24	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13	10/CTED1 /RPB11/Pl RB12 /CTPLS/P	11/PMD2/F MD1/RB1 [,] PMRD/RB1	RB10 1 13		
8 9 10 11	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4		21 22 23 24 25	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI	10/CTED1 /RPB11/PI /RB12 /CTPLS/P N10/C3INE	I1/PMD2/F MD1/RB1 MRD/RB1 B/RPB14/S	RB10 1 13 SCK1/CTE	D5/PMW	R/RB14
8 9 10 11 12	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4		21 22 23 24 25 26	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI AN9/C3INA/F	10/CTED1 /RPB11/PI RB12 /CTPLS/P N10/C3INE RPB15/SC	I1/PMD2/F MD1/RB1 PMRD/RB1 B/RPB14/S K2/CTED	RB10 1 13 SCK1/CTE 6/PMCS1/	D5/PMW RB15	R/RB14
8 9 10 11 12 13	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VDD		21 22 23 24 25 26 27	PGED2/RPB PGEC2/TMS AN12/PMD0/ AN11/RPB13 CVREFOUT/AI AN9/C3INA/F AVSS	10/CTED1 /RPB11/PI RB12 /CTPLS/P N10/C3INE RPB15/SC	I1/PMD2/F MD1/RB1 PMRD/RB1 B/RPB14/S K2/CTED	RB10 1 13 SCK1/CTE 6/PMCS1/	ED5/PMW RB15	R/RB14

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

Shaded pins are 5V tolerant. 3:

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/36/44pin Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF . Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF .
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) (DS50001765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB[®] REAL ICE™ Emulator" (poster) (DS50001749)

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	—	_	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	_	—	_	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
15:8				BMXDU	DBA<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				BMXDU	DBA<7:0>			

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				ROTRI	√<8:1>			
22:16	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	ROTRIM<0>	—	—	—	—	—	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_	_	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON (REFOCON<15>) bit is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	—	_	SUSPEND	DMABUSY	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

TABLE 11-6: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SS										В	ts								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5404		31:16	-	—	-	-	-	—	—	—	-	—	—	—	—	—	-	—	0000
FA04	INTIR	15:0	_	_	_	—	_	_	_	—	_	_	_	_		INT1F	R<3:0>		0000
EVUS		31:16		—	_	—	—	_	_	_		—	_	_	_	_	—		0000
FAUO	INTZR	15:0	_	—	—	—	—	—	—	—	_	—	—	_		INT2F	R<3:0>		0000
EAOC		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
TAUC	INTOK	15:0	_	_				_	—		_	_	—	_		INT3F	R<3:0>		0000
EA10		31:16	_	_				_	—		_	_	—	_	_	—	—	_	0000
1710		15:0	_	—	—	—	—	—	—	—	—	—	—	—		INT4F	R<3:0>		0000
FA18	T2CKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17(10	120101	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T2CK	R<3:0>		0000
FA1C	T3CKR	31:16	_	—	—	—	—	—	—	—	-	—	—	—	—		—	—	0000
TAIC	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T3CK	R<3:0>		0000
EA20	TACKR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1720	140111	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T4CK	R<3:0>		0000
EA24		31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1724	TOORIC	15:0	—	—	—	—	—	—	—	—	—	—	—	—		T5CK	R<3:0>		0000
EA28		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1 A20	ICIK	15:0	_	_	—			_	_		_	_	_			IC1R	<3:0>		0000
FA2C	IC2P	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1720	10211	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC2R	<3:0>		0000
EA30	IC3P	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
EA34		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
17.04		15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC4R	<3:0>		0000
EA38	IC5R	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1,730	10011	15:0	—	—	—	—	—	—	—	—	—	—	—	—		IC5R	<3:0>		0000
E448	OCEAR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
1740		15:0	—	—	—	—	—	—	—	—	—	—	—	—		OCFA	R<3:0>		0000
FAAC	OCEBR	31:16	_	—	—	_	_	—	—	_	_	—	—	—	—	—	—	_	0000
1740		15:0	_	—	—	—	—	—	—	—	_	—	—	—		OCFB	R<3:0>		0000
EA 50		31:16	_	_	-	—	-	—	—	—	_	_	—	—	—	—	-	—	0000
FA5U	UIKAR	15:0	_	_	-	-		_	_	_	_	_	_	—		U1RX	R<3:0>		0000

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	_	—	—	AUDMONO ^(1,2)	—	AUDMOD)<1:0> ^(1,2)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 **FRMERREN:** Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
 - 1 = Transmit underrun generates error events
 - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
 0 = A ROV is a critical error that stops SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
- 1 = Audio protocol enabled
 - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit^(1,2)
 - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
 - 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit^(1,2)
 - 11 = PCM/DSP mode
 - 10 = Right-Justified mode
 - 01 = Left-Justified mode
 - $00 = I^2S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - 2: This bit is only valid for AUDEN = 1.

REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED) bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character) bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is Idle 0 = Data is being received PERR: Parity Error Status bit (read-only) bit 3 1 = Parity error has been detected for the current character 0 = Parity error has not been detected bit 2 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected **OERR:** Receive Buffer Overrun Error Status bit. bit 1 This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and the RSR to an empty state. 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)

- 1 = Receive buffer has data, at least one more character can be read
- 0 = Receive buffer is empty

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	CSF<1:0> ⁽²⁾		ALP ⁽²⁾	_	CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 functions as Chip Select
 - 01 = PMCS1 functions as PMA<14>
 - 00 = PMCS1 functions as PMA<14>
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	_	—	-
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:10	—	—	—	MONTH10	MONTH01<3:0>			
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	—	—	DAY1	0<1:0>		DAY01	<3:0>	
7:0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	_	_	_	_	_	V	VDAY01<2:0:	>

REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

ess		ø								Bi	ts								s
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
9120	ADC1BUEB	31:16														0000			
0120	ADCIDOI D	15:0												0000					
0120		31:16												0000					
9130	ADCIDUFC	15:0											0000						
0140		31:16	ADC Desult Word D (ADC101 (ED_21.05)												0000				
9140	ADCIDUFD	15:0	ADC Result Word D (ADCTBUFD<31:0>)										0000						
0150		31:16												0000					
9150	ADCIDUIL	15:0	ADC RESult Word E (ADC ID0FE<31.02)								0000								
0160		31:16										E<31.05)							0000
9160	ADGIBUFF	15:0							ADC Res			r>31.02)							0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for details.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	CH0NB	—	—	—	CH0SB<3:0>					
22:16	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:10	CH0NA	—	—	—	CH0SA<3:0>					
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15:8	—	—	—	—	_	—	—	—		
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
						_		_		

REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

Legend:

bit 31

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

		 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL
bit 30	-28	Unimplemented: Read as '0'
bit 27	-24	CH0SB<3:0>: Positive Input Select bits for Sample B
		<pre>1111 = Channel 0 positive input is Open⁽¹⁾ 1110 = Channel 0 positive input is IVREF⁽²⁾ 1101 = Channel 0 positive input is CTMU temperature sensor (CTMUT)⁽³⁾ 1100 = Channel 0 positive input is AN12⁽⁴⁾</pre>
		•
		•
		•
		0001 = Channel 0 positive input is AN1 0000 = Channel 0 positive input is AN0
bit 23		CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽²⁾
		1 = Channel 0 negative input is AN10 = Channel 0 negative input is VREFL
bit 22	-20	Unimplemented: Read as '0'
bit 19	-16	CH0SA<3:0>: Positive Input Select bits for Sample A Multiplexer Setting 1111 = Channel 0 positive input is Open ⁽¹⁾ 1110 = Channel 0 positive input is IVREF ⁽²⁾ 1101 = Channel 0 positive input is CTMU temperature (CTMUT) ⁽³⁾ 1100 = Channel 0 positive input is AN12 ⁽⁴⁾
		•
		•
		•
		0001 = Channel 0 positive input is AN1 0000 = Channel 0 positive input is AN0
bit 15	-0	Unimplemented: Read as '0'
Note	1: 2: 3: 4:	This selection is only used with CTMU capacitive and time measurement. See Section 24.0 "Comparator Voltage Reference (CVREF)" for more information. See Section 25.0 "Charge Time Measurement Unit (CTMU)" for more information. AN12 is only available on 44-pin devices. AN6-AN8 are not available on 28-pin devices.

NOTES:

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components.

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

27.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

In addition, the DEVID register (Register 27-6) provides device and revision information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24	—	—	—	—	—	—	FWDTWI	NSZ<1:0>	
22:16	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:10	FWDTEN	WINDIS	—			WDTPS<4:0>			
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM<1:0>		FPBDIV<1:0>		—	OSCIOFNC	POSCM	OD<1:0>	
7:0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
	IESO	—	FSOSCEN	—	—	F	NOSC<2:0>		

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

0
10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

28.0 INSTRUCTION SET

The PIC32MX1XX/2XX family instruction set complies with the MIPS32[®] Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to *"MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set"* at www.imgtec.com for more information.

NOTES:

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

28-Lead SOIC

28-Lead SPDIP

Example

Example

28-Lead SSOP

28-Lead QFN

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	If the full N line, thus I	Aicrochip part number cannot be marked on one line, it is carried over to the next imiting the number of available characters for customer-specific information.