

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ХF

Dectano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256b-50i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.9 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-5 and Figure 2-6.

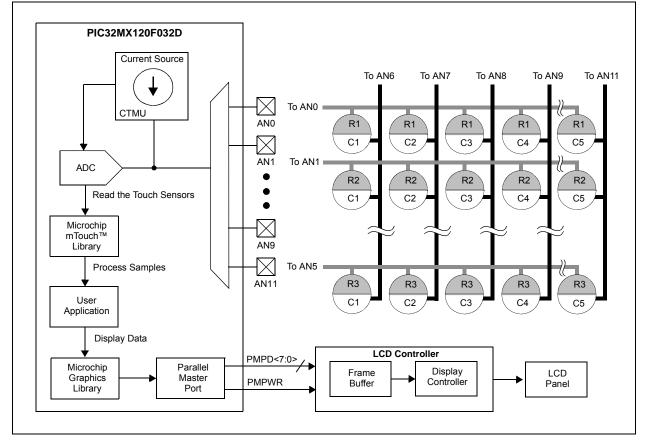
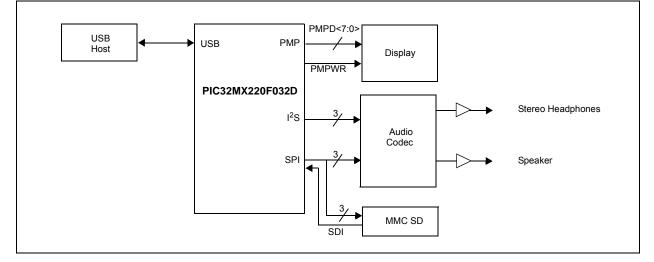



FIGURE 2-6: AUDIO PLAYBACK APPLICATION

5.1 Flash Controller Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

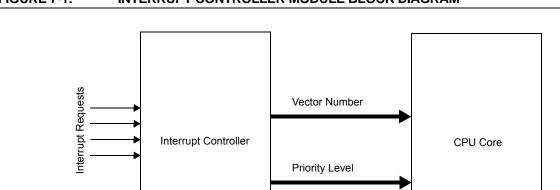
ess		0								Bit	s								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F400	NVMCON ⁽¹⁾	31:16	—	—	-	—	—	—	_	-	—	_	—	_	—	—	-	-	0000
F400	INVIVICOIN**	15:0	WR	WREN	WRERR	LVDERR	LVDSTAT	_		—		—	—	—		NVMO	P<3:0>		0000
F410	NVMKEY	31:16								NVMKEY	<31·0>								0000
1410		15:0									~51.02								0000
F420	NVMADDR ⁽¹⁾	31:16									P<31.0>								0000
1 420	NVINADDR	15:0	NVMADDR<31:0>												0000				
F430	NVMDATA	31:16								NVMDAT	N~31·0>								0000
1 430		15:0											0000						
E440	NVMSRCADDR	31:16 NVMSRCADDR<31:0>										0000							
1 440	NVINGRCADDR	15:0	0									0000							

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

7.0 INTERRUPT CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX1XX/2XX 28/36/44-pin Family interrupt module includes the following features:

- Up to 64 interrupt sources
- · Up to 44 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- · Software can generate any interrupt
- User-configurable Interrupt Vector Table (IVT) location
- User-configurable interrupt vector spacing

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Note: The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/36/44-pin Family devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		_	_	—	_		_	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	—	—	—	—	—	—	—	—		
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	—	_		_	_	SRIPL<2:0> ⁽¹⁾				
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_			VEC	<5:0> ⁽¹⁾				

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾
 - 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

D:/	Dit	Dit	D:	Dit	D'i	D:	Dir	Dit				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24				IPTMF	<31:24>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23.10	IPTMR<23:16>											
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
10.0	IPTMR<15:8>											
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				IPTM	R<7:0>							

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data
	sheet, refer to Section 6. "Oscillator
	Configuration" (DS60001112), which is
	available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	UFRCEN: USB FRC Clock Enable bit ⁽¹⁾
	 1 = Enable the FRC as the clock source for the USB clock source 0 = Use the Primary Oscillator or USB PLL as the USB clock source
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable the Secondary Oscillator
	0 = Disable the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

10.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 Full-Speed and Low-Speed embedded host, Full-Speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 10-1.

The clock generator provides the 48 MHz clock required for USB Full-Speed and Low-Speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- · USB Full-Speed support for Host and Device
- Low-Speed Host support
- USB OTG support
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- Note: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc., also referred to as USB-IF (www.usb.org). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

TABL	E 11-7:	PEI	RIPHER		SELEC		PUT RE	GISTER	MAP (CONTIN	IUED)								
SS										В	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB4C	RPB8R	31:16	_	-	—	-	_	-	_	_	-	—	_	—	_	_	_	—	0000
1040	IN DOIX	15:0	_				—		_	—			—	—		RPB8	<3:0>		0000
FB50	RPB9R	31:16	—	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	0000
1 830	KF D9K	15:0	—	_	—	_	—	—	-		_	—	—	—		RPB9	<3:0>		0000
FB54	RPB10R	31:16	—	_	—	_	—	—	-		_	—	—	—	-	_	—	—	0000
FB34	REDIUR	15:0	—	—	_	—	—	—			—	—	—	—		RPB1	0<3:0>		0000
FB58	RPB11R	31:16	—	—	_	—	—	—			—	—	—	—			_	—	0000
FB30	RPBIIR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	1<3:0>		0000
FB60	RPB13R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB00	RPBISR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	3<3:0>		0000
FB64	RPB14R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB04	KPD14K	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	4<3:0>		0000
FB68	RPB15R	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB00	RPBIOR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPB1	5<3:0>		0000
FB6C	RPC0R ⁽³⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FBOC	RECOR	15:0	—	—	—	—	—	—	-		—	—	-	—		RPCC	<3:0>		0000
FB70	RPC1R ⁽³⁾	31:16	—	—	_	—	—	_			—	—	—	—			_	—	0000
FB/U	RPUIK	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC1	<3:0>		0000
FB74	RPC2R ⁽¹⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/4	RP62R ^V	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC2	<3:0>		0000
FB78	RPC3R ⁽³⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/0	RPGSR	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC3	<3:0>		0000
FB7C	RPC4R ⁽¹⁾	31:16	_	—	_	_	-	—	_	_	_	_	_	—	_	_	_	_	0000
FB/C	RPC4R ^V	15:0	_	—	_	_	-	—	_	_	_	_	_	—		RPC4	<3:0>		0000
FB80	RPC5R ⁽¹⁾	31:16		—	—	—	—	—	_		—		—	—	_	_	—	_	0000
FB80	KPUSK"								RPC5	RPC5<3:0>									
FB84	RPC6R ⁽¹⁾	31:16					—	_	_	_	_		—	—	_	—		—	0000
FB04	RPU0K"	15:0					—	_	_	_	_		—	—		RPC	<3:0>		0000
FB88	RPC7R ⁽¹⁾	31:16		—		—	—	—	_		—		—	—	_	_	—		0000
F B 08	RPU/R ⁽¹⁾	15:0	_	_	—	_	_	—	—	_	—		_	_		RPC7	<3:0>		0000

OT AUTOUT DEALATED MAD

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: 3:

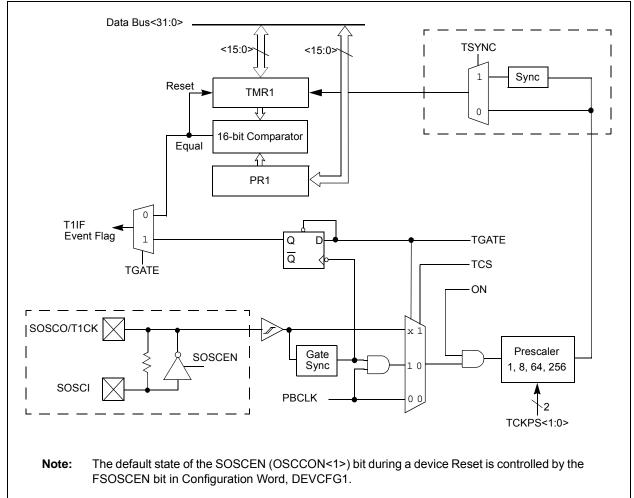
This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices.

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM


The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Figure 12-1 illustrates a general block diagram of Timer1.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	_	_	—	AUDMONO ^(1,2)	—	AUDMOD)<1:0> ^(1,2)

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 **FRMERREN:** Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
 - 1 = Transmit underrun generates error events
 - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
 0 = A ROV is a critical error that stops SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
- 1 = Audio protocol enabled
 - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit^(1,2)
 - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
 - 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit^(1,2)
 - 11 = PCM/DSP mode
 - 10 = Right-Justified mode
 - 01 = Left-Justified mode
 - $00 = I^2S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

REGISTER 19-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	 ABAUD: Auto-Baud Enable bit 1 = Enable baud rate measurement on the next character – requires reception of Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement disabled or completed
bit 4	RXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = High-Speed mode – 4x baud clock enabled 0 = Standard Speed mode – 16x baud clock enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit 1 = 2 Stop bits 0 = 1 Stop bit

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		—	—	_	_		—	—	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	
15:8		VCFG<2:0>		OFFCAL	—	CSCNA	—	—	
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	
7:0	BUFS			SMP	BUFM	ALTS			

REGISTER 22-2: AD1CON2: ADC CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	VREFH	VREFL
000	AVDD	AVss
001	External VREF+ pin	AVss
010	AVdd	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the sample and hold amplifier are connected to VREFL

0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
 - 1 = Scan inputs

0 = Do not scan inputs

bit 9-8 **Unimplemented:** Read as '0'

bit 7 **BUFS:** Buffer Fill Status bit

Only valid when BUFM = 1.

1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7

0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

```
1111 = Interrupts at the completion of conversion for each 16<sup>th</sup> sample/convert sequence
```

1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence

- •

0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

bit 1 BUFM: ADC Result Buffer Mode Select bit

- 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0

bit 0 ALTS: Alternate Input Sample Mode Select bit

- 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
- 0 = Always use Sample A input multiplexer settings

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED) bit 24 EDG1STAT: Edge1 Status bit Indicates the status of Edge1 and can be written to control edge source 1 = Edge1 has occurred 0 = Edge1 has not occurred EDG2MOD: Edge2 Edge Sampling Select bit bit 23 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 22 EDG2POL: Edge 2 Polarity Select bit 1 = Edge2 programmed for a positive edge response 0 = Edge2 programmed for a negative edge response bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = C3OUT pin is selected 1110 = C2OUT pin is selected 1101 = C1OUT pin is selected 1100 = PBCLK clock is selected 1011 = IC3 Capture Event is selected 1010 = IC2 Capture Event is selected 1001 = IC1 Capture Event is selected 1000 = CTED13 pin is selected 0111 = CTED12 pin is selected 0110 = CTED11 pin is selected 0101 = CTED10 pin is selected 0100 = CTED9 pin is selected 0011 = CTED1 pin is selected 0010 = CTED2 pin is selected 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected bit 17-16 Unimplemented: Read as '0' bit 15 **ON:** ON Enable bit 1 = Module is enabled 0 = Module is disabled bit 14 Unimplemented: Read as '0' bit 13 CTMUSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when the device enters Idle mode 0 = Continue module operation when the device enters Idle mode TGEN: Time Generation Enable bit⁽¹⁾ bit 12 1 = Enables edge delay generation 0 = Disables edge delay generation bit 11 EDGEN: Edge Enable bit 1 = Edges are not blocked 0 = Edges are blocked

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
	_	_	_	_	— — FWDTWIN				
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN	WINDIS	_	WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM	1<1:0>	FPBDIV<1:0> —			OSCIOFNC POSCMOD<1:0>			
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	_	FSOSCEN	_	—	F	FNOSC<2:0>		

REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1:4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
······································

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

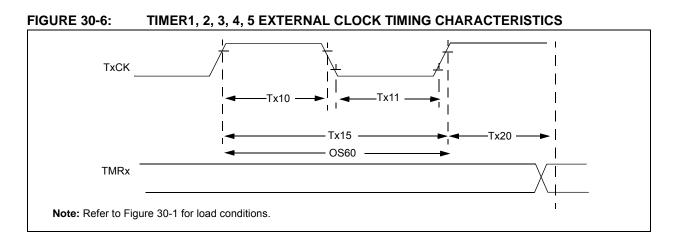

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No. Symbol Characteristics			Min.	Тур.	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage (Note 2)	2.3		3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	_	—	V	—	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	—	2.1	V	_	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	_	0.115	V/μs	_	

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 30-11 for BOR values.

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

					$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol Characteristics ⁽⁴⁾		teristics ⁽²⁾	Min. Ty		Typical	Max.	Units	Conditions		
TA10	T⊤xH	TxCK High Time	Synchronous, with prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15		
			Asynchrono with presca		10	—	_	ns	—		
TA11	T⊤xL	TxCK Low Time	Synchronous, with prescaler Asynchronous, with prescaler		,		[(12.5 ns or 1 Трв)/N] + 25 ns	—	_	ns	Must also meet parameter TA15
					10	_	_	ns	—		
TA15	ΤτχΡ	TxCK Input Period	Synchronous, with prescaler				[(Greater of 25 ns or 2 Трв)/N] + 30 ns	-	_	ns	VDD > 2.7V
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	-	—	ns	VDD < 2.7V		
			Asynchrono with presca		20	-	_	ns	VDD > 2.7V (Note 3)		
					50	-	_	ns	VDD < 2.7V (Note 3)		
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by settin the TCS (T1CON<1>) bit)			32	—	100	kHz	-		
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		К		—	1	Трв	—		

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 SDOx MSb Bit 14 -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 30-1 for load conditions.

TABLE 30-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No. Symbol Characteristics ⁽¹⁾		Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	_		ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	_	ns	_	
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
	TscL2doV	SCKx Edge		_	20	ns	VDD < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
Clock Parameters										
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 30-35			
Convers	sion Rate						·			
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—			
AD56	FCNV	Throughput Rate	_	—	1000	ksps	AVDD = 3.0V to 3.6V			
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V			
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns			
Timing	Paramete	rs								
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	_	1.0 Tad		_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected			
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	—			
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_			
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	—			

TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support