

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

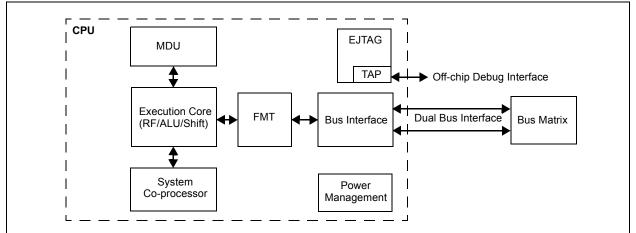
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256b-v-ml

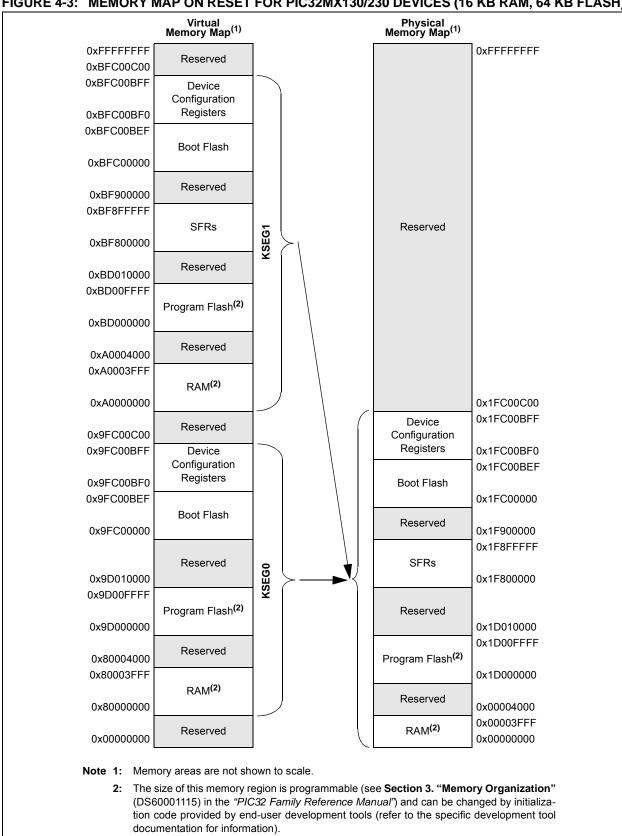
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at: www.imgtec.com.


The MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX1XX/2XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the destinations.


3.1 Features

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 2)
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - Bit field manipulation instructions

- MIPS16e[®] code compression
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) mechanism
- · Simple dual bus interface
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- · Autonomous multiply/divide unit
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- Power control
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG debug and instruction trace
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

FIGURE 3-1: MIPS32[®] M4K[®] PROCESSOR CORE BLOCK DIAGRAM

FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 64 KB FLASH)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	R	R	R	R	R	R	R	R						
31:24	BMXPFMSZ<31:24>													
00.40	R R R R R R R													
23:16	BMXPFMSZ<23:16>													
45.0	R	R	R	R	R	R	R	R						
15:8	BMXPFMSZ<15:8>													
7.0	R	R	R	R	R	R	R	R						
7:0				BMXPF	MSZ<7:0>									

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00004000 = Device has 16 KB Flash 0x00008000 = Device has 32 KB Flash 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	Bit Bit 31/23/15/7 30/22/14/6				Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R	R	R	R	R	R	R	R						
31:24	BMXBOOTSZ<31:24>													
00.40	R	R	R	R	R	R	R	R						
23:16	BMXBOOTSZ<23:16>													
45.0	R	R	R	R	R	R	R	R						
15:8	BMXBOOTSZ<15:8>													
7.0	R	R	R	R	R	R	R	R						
7:0				BMXBO	OTSZ<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00000C00 = Device has 3 KB boot Flash

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	—	—	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	—	—	_	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	_	SUSPEND	DMABUSY	_	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	nd as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	-	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	-	_	_	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		—		_	_		_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	[<7:0>			

REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Legend:

=0901141			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 CHPDAT<7:0>: Channel Data Register bits

Pattern Terminate mode: Data to be matched must be stored in this register to allow a "terminate on match".

All other modes: Unused.

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Address (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB00	RPA0R	31:16		—	—	—	_	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	_	_	—	_	_	—	—	—		RPA0	<3:0>		0000
FB04	RPA1R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 001		15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA1	<3:0>		0000
FB08	RPA2R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 000	i (i / t <u>2</u> i (15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA2	<3:0>		0000
FB0C	RPA3R	31:16	_	_	—	—	_	_	_	_	_	—	_	_	_	—		—	0000
T BOC		15:0	_		—	_	_	_	—	_	_		—	_		RPA3	<3:0>		0000
FB10	RPA4R	31:16		_	_	_	_	_	_	_	_		_	_	_			—	0000
T D IO		15:0	—	—	—	—	_		—	_		—	—	—		RPA4	<3:0>		0000
FB20	RPA8R ⁽¹⁾	31:16	—	—	—	—	_		—	_		—	—	—	_	—	—	—	0000
1 020	KFAOK'	15:0	_	—	—	—	_		—	_		—	—	—		RPA8	<3:0>		0000
FB24	RPA9R ⁽¹⁾	31:16	—	—	—	—	-		—	-		_	—	—	-	—	_	—	0000
1 D24	KFA9K /	15:0	—	—	—	—	-		—	-		—	—	—	RPA9<3:0>				0000
FB2C	RPB0R	31:16	_	_	—	—	_	-	_	_	-	—	_	—	_	_	_	—	0000
1 020	KF DUK	15:0	_	—	—	—	_	_	—	_	_	—	—	—		RPB0	<3:0>		0000
FB30	RPB1R	31:16	—	_	—	—			—			—	—	—		_	—	—	0000
FB30	REDIR	15:0	—	_	—	—			—			—	—	—		RPB1	<3:0>		0000
FB34	RPB2R	31:16	_	_	_	_			_			_	_	_		_	_	—	0000
FB34	RPBZR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB2	<3:0>		0000
FB38	RPB3R	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
FB30	RPBJR	15:0	—	—	—	—	—	_	_	—	_	—	_	—		RPB3	<3:0>		0000
FD2C		31:16	—	—	—	—	—	_	_	—	_	—	_	—	—	—	—	—	0000
FB3C	RPB4R	15:0	_	_	—	_	_	_	_	_	_	_	_	_		RPB4	<3:0>		0000
ED 40		31:16			—	—	—	-	—	—	—	—	—	—	_			—	0000
FB40	RPB5R	15:0	_		—											RPB5	<3:0>		0000
5044		31:16	_	—	_	—	—	_	_	_	_	—	_	—	_	_	_	—	0000
FB44	RPB6R ⁽²⁾	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB6	<3:0>		0000
50.40		31:16	_	—	_	—	_	_	_	_	_	—	_	—	_	_	_	—	0000
FB48	RPB7R	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB7	<3:0>		0000

DS60001168J-page 138

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: This register is only available on PIC32MX1XX devices.

3: This register is only available on 36-pin and 44-pin devices. PIC32MX1XX/2XX 28/36/44-PIN FAMILY

12.2 Timer1 Control Registers

TABLE 12-1: TIMER1 REGISTER MAP

ess		0								В	its								s
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	T1CON	31:16	—	_	_	_	_	—	_	—	_	—	—	—	_	—	_	_	0000
0600	TICON	15:0	ON	—	SIDL	TWDIS	TWIP	—	_	—	TGATE	_	TCKPS	S<1:0>	—	TSYNC	TCS	_	0000
0610	TMR1	31:16	—	-	—	—	—	—	—	—	—	—	_	_	—	—	—	—	0000
0010		15:0								TMR1	<15:0>								0000
0620	PR1	31:16	—	_	_	_	_	—	-	—	—	_	—	_	_	_	_		0000
0020	FRI	15:0								PR1<	:15:0>								FFFF

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGIST	ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)												
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)												
	1 = Frame synchronization pulse coincides with the first bit clock												
	0 = Frame synchronization pulse precedes the first bit clock												
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾ 1 = Enhanced Buffer mode is enabled												
	1 = Enhanced Buffer mode is enabled0 = Enhanced Buffer mode is disabled												
	0 = Enhanced Buffer mode is disabled												
bit 15	DN: SPI Peripheral On bit ⁽¹⁾												
	1 = SPI Peripheral is enabled												
	0 = SPI Peripheral is disabled												
bit 14	Unimplemented: Read as '0'												
bit 13	SIDL: Stop in Idle Mode bit												
	1 = Discontinue module operation when the device enters Idle mode												
	0 = Continue module operation when the device enters Idle mode												
bit 12	DISSDO: Disable SDOx pin bit												
	1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register												
	0 = SDOx pin is controlled by the module												
bit 11-10	MODE<32,16>: 32/16-Bit Communication Select bits												
	When AUDEN = 1:												
	MODE32 MODE16 Communication												
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame												
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame												
	0 1 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame												
	0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame												
	When AUDEN = 0:												
	MODE32 MODE16 Communication												
	1 x 32-bit 0 1 16-bit												
	0 1 10-51												
bit 9	SMP: SPI Data Input Sample Phase bit												
bit 5	Master mode (MSTEN = 1):												
	1 = Input data sampled at end of data output time												
	0 = Input data sampled at middle of data output time												
	Slave mode (MSTEN = 0):												
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.												
	To write a '1' to this bit, the MSTEN value = 1 must first be written.												
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾												
	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit)												
	0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)												
bit 7	SSEN: Slave Select Enable (Slave mode) bit												
	$1 = \overline{SSx}$ pin used for Slave mode												
	0 = SSx pin not used for Slave mode, pin controlled by port function.												
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾												
	1 = Idle state for clock is a high level; active state is a low level												
	0 = Idle state for clock is a low level; active state is a high level												
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in												
	the SYSCLK cycle immediately following the instruction that clears the module's ON bit.												
2:	This bit can only be written when the ON bit = 0 .												
3:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI												
	mode (FRMEN = 1).												
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value												
	of CKP.												

2

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	_	—
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾	_	_	—	AUDMONO ^(1,2)	—	AUDMOD)<1:0> ^(1,2)

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 **FRMERREN:** Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
 - 1 = Transmit underrun generates error events
 - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
 0 = A ROV is a critical error that stops SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
- 1 = Audio protocol enabled
 - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit^(1,2)
 - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
 - 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit^(1,2)
 - 11 = PCM/DSP mode
 - 10 = Right-Justified mode
 - 01 = Left-Justified mode
 - $00 = I^2S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - **2:** This bit is only valid for AUDEN = 1.

18.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/36/44-pin
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 24. "Inter-
	Integrated Circuit (I ² C)" (DS60001116),
	which is available from the Documentation
	> Reference Manual section of the Micro-
	chip PIC32 web site
	(www.microchip.com/pic32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 18-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	—	-	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		—	—	-	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	IREN	RTSMD	_	UEN	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 19-1: UXMODE: UARTX MODE REGISTER

Legend:

Logona.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: UARTx Enable bit⁽¹⁾
 - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by the UEN<1:0> and UTXEN control bits.
 - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal.
- bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
- 0 = Continue module operation when the device enters Idle mode
- bit 12 IREN: IrDA Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 **RTSMD:** Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 UEN<1:0>: UARTx Enable bits
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
 - 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 Трв
 - 10 = Wait of 3 Трв
 - 01 = Wait of 2 TPB
 - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 TPB
- 10 = Wait of 2 TPB
- 01 = Wait of 1 ТРВ
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24		_	-	_	-	-	_	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—		_		_	_	_		
	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8		CS1 ⁽¹⁾								
	—	ADDR14 ⁽²⁾	_		_		ADDR<10:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	ADDR<7:0>									

REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 31-15 **Unimplemented:** Read as '0'
- bit 14 **CS1:** Chip Select 1 bit⁽¹⁾
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 14 ADDR<14>: Destination Address bit 14⁽²⁾
- bit 13-11 Unimplemented: Read as '0'
- bit 10-0 ADDR<10:0>: Destination Address bits
- Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10.
 - **2:** When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

NOTES:

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 5-4 **Unimplemented:** Read as '0'
- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read
 If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

DC CHA	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Conditions						
		Program Flash Memory ⁽³⁾							
D130	Eр	Cell Endurance	20,000	—	_	E/W	—		
D131	Vpr	VDD for Read	2.3	—	3.6	V	—		
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—		
D134	Tretd	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	_	10	_	mA	—		
	Tww	Word Write Cycle Time	—	411	_	es	See Note 4		
D136	Trw	Row Write Cycle Time	—	6675	_	Cycles	See Note 2,4		
D137	TPE	Page Erase Cycle Time	—	20011	_		See Note 4		
	TCE	Chip Erase Cycle Time	—	80180	_	FRC	See Note 4		

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (See Table 30-19) and FRC tuning values (See Register 8-2).

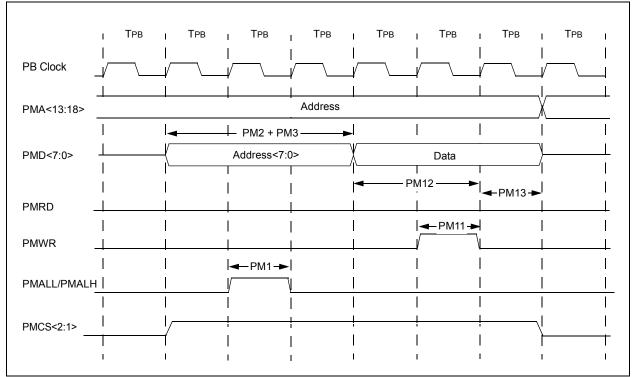
AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 4): 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Units	Conditions					
Clock P	arameters	S	•	•					
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 30-35		
Convers	sion Rate								
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—		
AD56	FCNV	Throughput Rate	—	—	1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed)	—	—	400	ksps	AVDD = 2.5V to 3.6V		
AD57	TSAMP	Sample Time	1 Tad	—	—	—	TSAMP must be \geq 132 ns		
Timing	Paramete	rs							
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾		1.0 Tad		_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	_		
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_		
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_		

TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.


4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	Tlat	PMALL/PMALH Pulse Width		1 Трв	_	_	_	
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	2 Трв	_	_	_	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	1 Трв	_	—	_	
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_	
PM5	Trd	PMRD Pulse Width	_	1 Трв	_	_	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	—	ns		

TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-5: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min. Typical Max. Units Co				
MOS10		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4		50 50		EC (Note 2) ECPLL (Note 1)

Note 1: PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 31-6:SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No. Symbol Characteristics			Min.	Typical	Max.	Units	Conditions
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2		—	ns	_
MSP11	TscH	SCKx Output High Time (Note 1,2)	Tscк/2		—	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

TABLE 31-7: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MSP10	TscL	SCKx Output Low Time (Note 1,2)	Тѕск/2	—	_	ns	—
MSP11	TSCH	SCKx Output High Time (Note 1,2)	Тѕск/2	—	—	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

Revision J (April 2016)

This revision includes the following major changes as described in Table A-8, as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE A-8: MAJOR SECTION UPDATES

Section	Update Description				
"32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog"	The PIC32MX270FDB device and Note 4 were added to TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" .				
2.0 "Guidelines for Getting Started with 32-bit MCUs"	EXAMPLE 2-1: "Crystal Load Capacitor Calculation" was updated.				
30.0 "Electrical Characteristics"	Parameter DO50a (Csosc) was removed from the Capacitive Loading Requirements on Output Pins AC Characteristics (see Table 30-16).				
"Product Identification System"	The device mapping was updated to include type B for Software Targeting.				