

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256bt-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				Rem	appab	le Pe	riphe	rals					<u> </u>		ls)				
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	l²C	PMP	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels)	RTCC	I/O Pins	JTAG	Packages
PIC32MX110F016B	28	16+3	4	20	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX110F016C	36	16+3	4	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX110F016D	44	16+3	4	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX120F032B	28	32+3	8	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX120F032C	36	32+3	8	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Υ	VTLA
PIC32MX120F032D	44	32+3	8	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F064B	28	64+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F064C	36	64+3	16	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Υ	VTLA
PIC32MX130F064D	44	64+3	16	32	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX150F128B	28	128+3	32	20	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX150F128C	36	128+3	32	24	5/5/5	2	2	5	3	Ν	2	Y	4/0	Y	12	Y	25	Y	VTLA
PIC32MX150F128D	44	128+3	32	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX130F256B	28	256+3	16	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX130F256D	44	256+3	16	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN
PIC32MX170F256B	28	256+3	64	20	5/5/5	2	2	5	3	N	2	Y	4/0	Y	10	Y	21	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX170F256D	44	256+3	64	32	5/5/5	2	2	5	3	N	2	Y	4/0	Y	13	Y	35	Y	VTLA, TQFP, QFN

TABLE 1: PIC32MX1XX 28/36/44-PIN GENERAL PURPOSE FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to documents listed in the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

BLOCK DIAGRAM

This document contains device-specific information for PIC32MX1XX/2XX 28/36/44-pin Family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX1XX/2XX 28/36/44-pin Family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

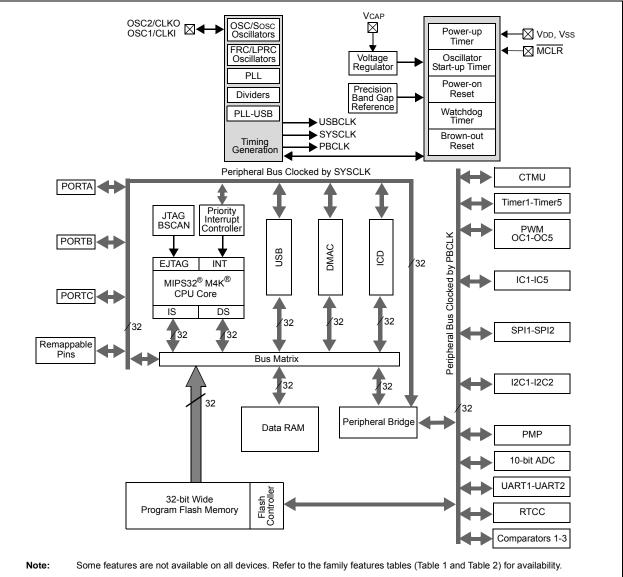


FIGURE 1-1:

5.1 Flash Controller Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		0								Bit	s								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F400	NVMCON ⁽¹⁾	31:16	—																
F400	INVIVICOIN**	15:0	WR	WREN	WRERR	LVDERR	LVDSTAT	_		—		_	—	_		NVMO	P<3:0>		0000
F410	NVMKEY	31:16								NVMKEY	<31·0>								0000
1410		15:0									~51.02								0000
F420	NVMADDR ⁽¹⁾	31:16								NVMADD	₽<31·0>								0000
1 420	NVINADDR	15:0								NVINADD	N~51.02								0000
F430	NVMDATA	31:16								NVMDAT	N~31·0>								0000
1 430		15:0												0000					
E440	NVMSRCADDR	31:16							N										0000
1 440	NVINGRCADDR	15:0	NVMSRCADDR<31:0>																

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	—	—		_					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:10	—	—	—	—	—	—	—	—				
45.0	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0				
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾		_					
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_	—		—		P<3:0>						

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re-	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

011 31-10	Unimplemented. Read as 0
bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation is complete or inactive
bit 14	WREN: Write Enable bit
	This is the only bit in this register reset by a device Reset.
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
bit 13	WRERR: Write Error bit ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set and cleared by the hardware.
	1 = Low-voltage event is active
hit 10 1	0 = Low-voltage event is not active
bit 10-4 bit 3-0	Unimplemented: Read as '0'
0-6 110	NVMOP<3:0>: NVM Operation bits These bits are writable when WREN = 0.
	1111 = Reserved
	•
	•
	0111 = Reserved 0110 = No operation
	0101 = Program Flash Memory (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
	0010 = No operation
	0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected 0000 = No operation

Note 1: This bit is cleared by setting NVMOP == `b0000, and initiating a Flash operation (i.e., WR).

REGIST	ER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)
bit 9-8	IS01<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
bit 7-5	Unimplemented: Read as '0'
bit 4-2	IP00<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	•
	010 = Interrupt priority is 2
	001 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 1-0	IS00<1:0>: Interrupt Subpriority bits
	11 = Interrupt subpriority is 3
	10 = Interrupt subpriority is 2
	01 = Interrupt subpriority is 1
	00 = Interrupt subpriority is 0
Note:	This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

8.1 Oscillator Control Regiters

TAB	TABLE 8-1: OSCILLATOR CONTROL REGISTER MAP																		
ess		0									Bits								ú
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
E000	F000 OSCCON	31:16	—	_	PLLODIV<2:0> COSC<2:0> —			FRCDIV<2:0> — NOSC<2:0> CLKLOO		—	SOSCRDY	PBDIVRDY	DY PBDIV<1:0>		PLLMULT<2:0>		>	x1xx ⁽²⁾	
FUUU	030001	15:0	—							CLKLOCK	ULOCK ⁽³⁾	SLOCK	SLPEN	CF	UFRCEN ⁽³⁾	SOSCEN	OSWEN	xxxx(2)	
F010	OSCTUN	31:16	_	_		_	_			_	_	_	_	_		_	—	_	0000
1010	030101	15:0	_	_		_	_			_	_	_			TUN	l<5:0>			0000
5000		31:16	_								RODIV<1	4:0>							0000
F020 REFOCON 15:0 ON - SIDL OE RSLP - DIVSWEN ACTIVE								ROSE	_<3:0>		0000								
F000	DEEOTDIM	31:16	6 ROTRIM<8:0>								_	0000							
F030	REFOTRIM	15:0	_	_		_	_			-	_	_	_	_		_	—	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

3: This bit is only available on PIC32MX2XX devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	—	_	—	_	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10		_		_	_		_					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				CHCSIZ	<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	CHCSIZ<7:0>											

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	—	—	_	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	—	—	—	—				
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8	CHCPTR<15:8>											
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		CHCPTR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_				—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—			-	—		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	-	—	—	-	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7:0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled

bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit

- 1 = 1 millisecond timer interrupt is enabled
- 0 = 1 millisecond timer interrupt is disabled

bit 5 LSTATEIE: Line State Interrupt Enable bit

- 1 = Line state interrupt is enabled
- 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = Activity interrupt is enabled
 - 0 = Activity interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
 - 1 = B-Device session end interrupt is enabled
 - 0 = B-Device session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
 - 1 = A-Device VBUS valid interrupt is enabled
 - 0 = A-Device VBUS valid interrupt is disabled

REGISTER 10-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit Bit 30/22/14/6 29/21/13/5 2		Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—				_	_	—				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	_	—				_	_	—				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	_	—				_	_	—				
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0				
7.0		ENDP	T<3:0>		DIR	PPBI						

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the Buffer Descriptor Table, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last Buffer Descriptor Direction Indicator bit
 - 1 = Last transaction was a transmit (TX) transfer
 - 0 = Last transaction was a receive (RX) transfer
- bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = The last transaction was to the ODD Buffer Descriptor bank
 - 0 = The last transaction was to the EVEN Buffer Descriptor bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF (U1IR<3>) bit is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

Bit Range	Bit 31/23/15/7					Bit Bit 3/5 28/20/12/4 27/19/11/3		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	_	—	-	—	-	—	—	—						
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	-	_		—	-			—						
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
15.0	_	—	_	—	-	—	—	—						
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				BDTPTR	H<23:16>									

REGISTER 10-18: U1BDTP2: USB BUFFER DESCRIPTOR TABLE PAGE 2 REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 23 through 16 of the Buffer Descriptor Table base address, which defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

REGIOT													
Bit Range	Bit 31/23/15/7							Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31.24	—	—			_	_	—	—					
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	_						_	_					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
15.0	—	_				-	—	—					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0				BDTPTR	U<31:24>								

REGISTER 10-19: U1BDTP3: USB BUFFER DESCRIPTOR TABLE PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRU<31:24>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 31 through 24 of the Buffer Descriptor Table base address, defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

TABLE 11-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection				
RPA0	RPA0R	RPA0R<3:0>	0000 = No Connect				
RPB3	RPB3R	RPB3R<3:0>	0001 = <u>U1TX</u> 0010 = <u>U2RTS</u>				
RPB4	RPB4R	RPB4R<3:0>	0011 = SS1				
RPB15	RPB15R	RPB15R<3:0>					
RPB7	RPB7R	RPB7R<3:0>	0110 = Reserved 0111 = C2OUT				
RPC7	RPC7R	RPC7R<3:0>	1000 = Reserved				
RPC0	RPC0R	RPC0R<3:0>	•				
RPC5	RPC5R	RPC5R<3:0>	• 1111 = Reserved				
RPA1	RPA1R	RPA1R<3:0>	0000 = No Connect				
RPB5	RPB5R	RPB5R<3:0>	0001 = Reserved 0010 = Reserved				
RPB1	RPB1R	RPB1R<3:0>	0011 = SDO1				
RPB11	RPB11R	RPB11R<3:0>	0100 = SDO2 0101 = OC2				
RPB8	RPB8R	RPB8R<3:0>	0110 = Reserved				
RPA8	RPA8R	RPA8R<3:0>					
RPC8	RPC8R	RPC8R<3:0>	•				
RPA9	RPA9R	RPA9R<3:0>	1111 = Reserved				
RPA2	RPA2R	RPA2R<3:0>	0000 = No Connect				
RPB6	RPB6R	RPB6R<3:0>	0001 = Reserved 0010 = Reserved				
RPA4	RPA4R	RPA4R<3:0>	0011 = SDO1 0100 = SDO2				
RPB13	RPB13R	RPB13R<3:0>	0101 = OC4				
RPB2	RPB2R	RPB2R<3:0>					
RPC6	RPC6R	RPC6R<3:0>	1000 = Reserved				
RPC1	RPC1R	RPC1R<3:0>					
RPC3	RPC3R	RPC3R<3:0>	1111 = Reserved				
RPA3	RPA3R	RPA3R<3:0>	0000 = No Connect				
RPB14	RPB14R	RPB14R<3:0>					
RPB0	RPB0R	RPB0R<3:0>	0011 = <u>Reserved</u> 0100 = <u>SS2</u>				
RPB10	RPB10R	RPB10R<3:0>	0101 = OC3				
RPB9	RPB9R	RPB9R<3:0>					
RPC9	RPC9R	RPC9R<3:0>	1000 = Reserved				
RPC2	RPC2R	RPC2R<3:0>					
RPC4	RPC4R	RPC4R<3:0>	1111 = Reserved				

18.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:	This data sheet summarizes the features							
	of the PIC32MX1XX/2XX 28/36/44-pin							
	Family of devices. It is not intended to be							
	a comprehensive reference source. To							
	complement the information in this data							
	sheet, refer to Section 24. "Inter-							
	Integrated Circuit (I ² C)" (DS60001116),							
	which is available from the Documentation							
	> Reference Manual section of the Micro-							
	chip PIC32 web site							
	(www.microchip.com/pic32).							

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 18-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

NOTES:

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit Bit 29/21/13/5 28/20/12		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—		_	_	_	—	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	_	_		—	_	
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0	
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	_	—	—	—	COUT	
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1	
7:0	EVPOL	_<1:0>		CREF	_	_	CCH	<1:0>	

REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess				Bits									6						
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5040	PMD1	31:16	—	—	_	—	_	_	_	—	—	—	—	—	—	—	—	—	0000
F240	FIVIDI	15:0	-			CVRMD	Ι			CTMUMD	—	-		-	—		—	AD1MD	0000
5250	PMD2	31:16	—	—		—	_	_		—	—	—	—	—	—	—	—	—	0000
F250	FIVIDZ	15:0	-			—	Ι			—	—	-		-	—	CMP3MD	CMP2MD	CMP1MD	0000
F260	PMD3	31:16	_			_	-			_	_		_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIVIDS	15:0	_			_	-			_	_		_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
F270	PMD4	31:16	_			_	-			_	_		_	-	_	_	—	_	0000
F270	F IVID4	15:0	_			_	-			_	_		_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
F280	PMD5	31:16	_			_	-			USB1MD	_		_	-	_	_	I2C1MD	I2C1MD	0000
F200	FIVIDS	15:0	_			_	-		SPI2MD	SPI1MD	_		_	-	_	_	U2MD	U1MD	0000
F200	PMD6	31:16	_	—		—	_	_		_	—	_	—	_	—	—	—	PMPMD	0000
F290	I WD0	15:0	—	_	_	—	_	_	-	—	—	_	_	_	—	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components.

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

27.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

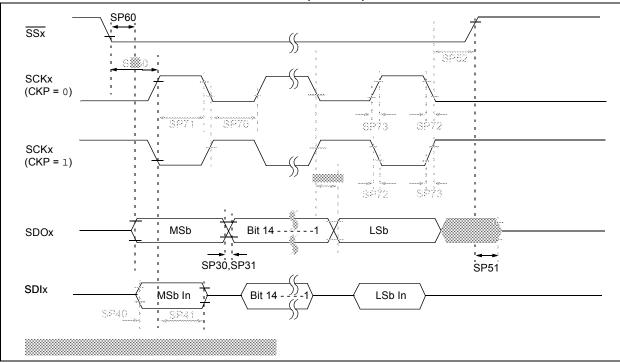
In addition, the DEVID register (Register 27-6) provides device and revision information.

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings


(See Note 1)

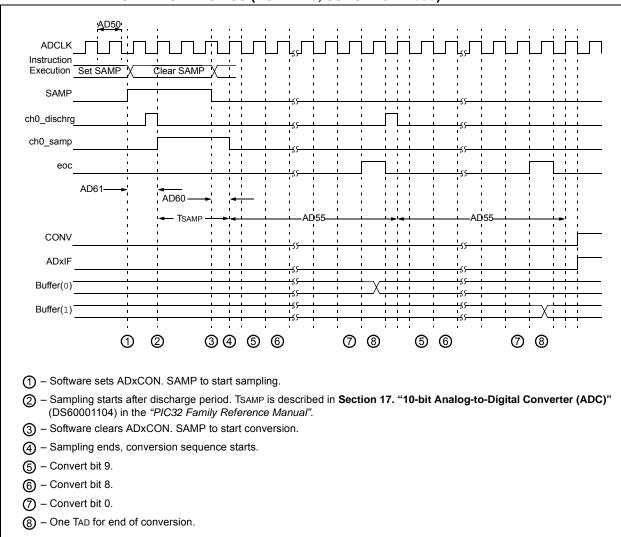
Ambient temperature under bias	40°C to +105°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	
Maximum current into VDD pin(s) (Note 2)	
Maximum output current sunk by any I/O pin	15 mA
Maximum output current sourced by any I/O pin	15 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).

3: See the "Pin Diagrams" section for the 5V tolerant pins.

FIGURE 30-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS


TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	_	_	ns	—
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	_	5	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_	—	20	ns	VDD > 2.7V
	TscL2doV	SCL2DOV SCKx Edge	_	—	30	ns	VDD < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—		ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 30-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

U1OTGSTAT (USB OTG Status)	110
U1PWRC (USB Power Control)	112
U1SOF (USB SOF Threshold)	123
U1STAT (USB Status)	118
U1TOK (USB Token)	122
UxMODE (UARTx Mode)	183
UxSTA (UARTx Status and Control)	185
WDTCON (Watchdog Timer Control)	155
Resets	
Revision History	329
RTCALRM (RTC ALARM Control)	203

S

Serial Peripheral Interface (SPI)	165
Software Simulator (MPLAB SIM)	
Special Features	239

Т

Timer1 Module Timer2/3, Timer4/5 Modules Timing Diagrams	
10-Bit Analog-to-Digital Conversion	
(ASAM = 0, SSRC<2:0> = 000)	293
10-Bit Analog-to-Digital Conversion (ASAM = 1,	
SSRC<2:0> = 111, SAMC<4:0> = 00001)	294
EJTAG	300
External Clock	269
I/O Characteristics	272
I2Cx Bus Data (Master Mode)	283
I2Cx Bus Data (Slave Mode)	286
I2Cx Bus Start/Stop Bits (Master Mode)	283
I2Cx Bus Start/Stop Bits (Slave Mode)	286
Input Capture (CAPx)	276
OCx/PWM	
Output Compare (OCx)	277
Parallel Master Port Read	296
Parallel Master Port Write	297

Parallel Slave Port	. 295
SPIx Master Mode (CKE = 0)	. 278
SPIx Master Mode (CKE = 1)	. 279
SPIx Slave Mode (CKE = 0)	. 280
SPIx Slave Mode (CKE = 1)	. 281
Timer1, 2, 3, 4, 5 External Clock	. 275
UART Reception	. 187
UART Transmission (8-bit or 9-bit Data)	. 187
Timing Requirements	
CLKO and I/O	. 272
Timing Specifications	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture Requirements	
Output Compare Requirements	
Simple OCx/PWM Mode Requirements	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 280
Timing Specifications (50 MHz)	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 305
U	
	101

UART	
USB On-The-Go (OTG)	103
V	
VCAP nin	250

VCAP pin	
Voltage Regulator (On-Chip)	250
W	
M/M/M/ Addross	2/1

WWW Address	. 341
WWW, On-Line Support	16