

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256d-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 28-PIN USB DEVICES

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX250F128B

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	18	PGED2/RPB10/D+/CTED11/RB10
5	Vss	19	PGEC2/RPB11/D-/RB11
6	OSC1/CLKI/RPA2/RA2	20	VUSB3V3
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/RB4	22	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14
9	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	TMS/RPB5/USBID/RB5	25	AVDD
12	VBUS	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

		OUT I/O D Pin Nui				Í	
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
PMA0	7	10	8	3	I/O	TTL/ST	Parallel Master Port Address bit 0 input (Buffered Slave modes) and output (Master modes)
PMA1	9	12	10	2	I/O	TTL/ST	Parallel Master Port Address bit 1 input (Buffered Slave modes) and output (Master modes)
PMA2		_		27	0	—	Parallel Master Port address
PMA3		_	_	38	0	_	(Demultiplexed Master modes)
PMA4		_	_	37	0	_	7
PMA5		_	_	4	0	_	
PMA6		_	_	5	0	_	-
PMA7		_	_	13	0	_	-
PMA8		_	_	32	0	_	-
PMA9		_	_	35	0	_	-
PMA10			_	12	0		-
PMCS1	23	26	29	15	0		Parallel Master Port Chip Select 1 strob
	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾	10 ⁽²⁾	-		Parallel Master Port data (Demultiplexed
PMD0	1 ⁽³⁾	 4 ⁽³⁾	35 ⁽³⁾	21 ⁽³⁾	I/O	TTL/ST	Master mode) or address/data
	19(2)	22(2)	25(2)	<u>9</u> (2)			(Multiplexed Master modes)
PMD1	2(3)	5 ⁽³⁾	36 ⁽³⁾	22 ⁽³⁾	I/O	TTL/ST	
	18(2)	21 ⁽²⁾	24 ⁽²⁾	8 ⁽²⁾			-
PMD2	<u></u>	6 ⁽³⁾	1 ⁽³⁾	23(3)	I/O	TTL/ST	
PMD3	15	18	19	1	I/O	TTL/ST	-
PMD4	10	10	18	44	1/O	TTL/ST	-
PMD5	13	16	17	43	I/O	TTL/ST	-
PMD5 PMD6	13 12 ⁽²⁾	15 ⁽²⁾	16 ⁽²⁾	43 42 ⁽²⁾	1/0	111/31	-
FIVIDO	28(3)	3(3)	34 (3)	20(3)	I/O	TTL/ST	
PMD7	<u>11(2)</u>	14(2)	15 ⁽²⁾	41 ⁽²⁾			-
PINDI	27 ⁽³⁾	2 ⁽³⁾	33(3)	19 ⁽³⁾	I/O	TTL/ST	
PMRD	2/07	24	27	19(1)	0		Derellel Meeter Pert read stroke
PINIRD	21 22 ⁽²⁾	24 25 ⁽²⁾	27 28 ⁽²⁾	14 ⁽²⁾	0		Parallel Master Port read strobe
PMWR	<u></u> 4 ⁽³⁾	25 ⁽²⁾ 7 ⁽³⁾	28 ⁽⁻⁾ 2 ⁽³⁾	24 ⁽³⁾	0	—	Parallel Master Port write strobe
VBUS	12(3)	15 ⁽³⁾	16 ⁽³⁾	42(3)		Analog	USB bus power monitor
VBUS VUSB3V3	20 ⁽³⁾	23(3)	26 ⁽³⁾	10 ⁽³⁾	P	Analog	USB internal transceiver supply. This pin
VUSBSVS	20.7	23.7	20.7	10.7	Г	_	must be connected to VDD.
VBUSON	22 ⁽³⁾	25 ⁽³⁾	28 ⁽³⁾	14 ⁽³⁾	0	_	USB Host and OTG bus power control output
D+	18 ⁽³⁾	21 ⁽³⁾	24 ⁽³⁾	8 ⁽³⁾	I/O	Analog	USB D+
– D-	19(3)	22 ⁽³⁾	25 ⁽³⁾	9 ⁽³⁾	I/O	Analog	USB D-
Legend: C	CMOS = CI ST = Schm	MOS compa itt Trigger in input buffer	atible input	or output		Analog = O = Outp	Analog input P = Power

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

TABLE 4-1: SFR MEMORY MAP

	Virtual A	ddress
Peripheral	Base	Offset Start
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-5		0x0600
Input Capture 1-5		0x2000
Output Compare 1-5		0x3000
IC1 and IC2		0x5000
SPI1 and SPI2		0x5800
UART1 and UART2		0x6000
PMP		0x7000
ADC	0xBF80	0x9000
CVREF		0x9800
Comparator		0xA000
CTMU		0xA200
Oscillator		0xF000
Device and Revision ID		0xF220
Peripheral Module Disable		0xF240
Flash Controller		0xF400
Reset		0xF600
PPS		0xFA04
Interrupts		0x1000
Bus Matrix		0x2000
DMA	0xBF88	0x3000
USB		0x5050
PORTA-PORTC		0x6000
Configuration	0xBFC0	0x0BF0

4.2 Bus Matrix Control Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

ess (a										Bits							
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000	BMXCON ⁽¹⁾	31:16	—	_	_	_	-	_	_	_		—	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	BINIXCON	15:0			_	_		-		_		BMXWSDRM	_	_	-	В	MXARB<2:0>		0041
2010	BMXDKPBA ⁽¹⁾	31:16	—	_	_	_	_	_	_	_		—	_	—	_	_	_	—	0000
2010	DIVIAUNEDA	15:0	15:0 BMXDKPBA<15:0>							0000									
2020	BMXDUDBA ⁽¹⁾	31:16	_	_	_		_	—	_	_	_	—	_	—	_	_	_	_	0000
		15:0	BMXDUDBA<15:0> 0000								0000								
2030	BMXDUPBA ⁽¹⁾	31:16	—	—	—		—	—	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0									BN	IXDUPBA<15:0	>						0000
2040	BMXDRMSZ	31:16									BM	XDRMSZ<31:0	>						xxxx
		15:0				1				1				1					xxxx
2050	BMXPUPBA ⁽¹⁾	31:16	—	—	—		—	-	—	_	—	_	—	—		BMXPUPBA	<19:16>		0000
		15:0									BN	IXPUPBA<15:0	>						0000
2060	BMXPFMSZ	31:16									BM	IXPFMSZ<31:0	>						xxxx
2000	2	15:0									xxxx								
2070	BMXBOOTSZ	31:16									BM	XBOOTSZ<31:0)>						0000
	# (20010E	15:0																	0C00

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	NVMDATA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMDATA<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMDATA<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMD	ATA<7:0>						

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	NVMSRCADDR<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMSRCADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	NVMSRCADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMSRC	ADDR<7:0>						

Legend:					
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

- bit 18-16 **PLLMULT<2:0>:** Phase-Locked Loop (PLL) Multiplier bits
 - 111 = Clock is multiplied by 24
 - 110 = Clock is multiplied by 21
 - 101 = Clock is multiplied by 20
 - 100 = Clock is multiplied by 19
 - 011 = Clock is multiplied by 18
 - 010 = Clock is multiplied by 17
 - 001 = Clock is multiplied by 16
 - 000 =Clock is multiplied by 15
- bit 15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (OSCCON<26:24>)
 - 110 = Internal Fast RC (FRC) Oscillator divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (Posc) (XT, HS or EC)
 - 001 = Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast RC (FRC) Oscillator
- bit 11 Unimplemented: Read as '0'
- bit 10-8 NOSC<2:0>: New Oscillator Selection bits
 - 111 = Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits
 - 110 = Internal Fast RC Oscillator (FRC) divided by 16
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)
 - 010 = Primary Oscillator (XT, HS or EC)
 - 001 = Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)
 - 000 = Internal Fast Internal RC Oscillator (FRC)

On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).

bit 7 CLKLOCK: Clock Selection Lock Enable bit

If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):

- 1 = Clock and PLL selections are locked
- 0 = Clock and PLL selections are not locked and may be modified

If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):

Clock and PLL selections are never locked and may be modified.

- bit 6 ULOCK: USB PLL Lock Status bit⁽¹⁾
 - 1 = The USB PLL module is in lock or USB PLL module start-up timer is satisfied
 - 0 =The USB PLL module is out of lock or USB PLL module start-up timer is in progress or the USB PLL is disabled
- bit 5 SLOCK: PLL Lock Status bit
 - 1 = The PLL module is in lock or PLL module start-up timer is satisfied
 - 0 = The PLL module is out of lock, the PLL start-up timer is running, or the PLL is disabled
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = The device will enter Sleep mode when a WAIT instruction is executed
 - 0 = The device will enter Idle mode when a WAIT instruction is executed
- **Note 1:** This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	_	—	—	_	_	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	_	—	—	—	_	—				
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0				
15:8	ON ⁽¹⁾	—	_	SUSPEND	DMABUSY	_	_	—				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
7:0	_	_	_	_	_	_	_	_				

REGISTER 9-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Legend:

0						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: DMA On bit⁽¹⁾
 - 1 = DMA module is enabled
 - 0 = DMA module is disabled
- bit 14-13 **Unimplemented:** Read as '0'
- bit 12 SUSPEND: DMA Suspend bit
 - 1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
 - 0 = DMA operates normally

bit 11 DMABUSY: DMA Module Busy bit

- 1 = DMA module is active
- 0 = DMA module is disabled and not actively transferring data
- bit 10-0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
02:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	-	-	_	_	-	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	_	_	_	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

REGISTER 15-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Bit Value at POR: ('0', '1', x = unkn	own)	P = Programmable bit	r = Reserved bit

bit 31-16	Unimplemented: Read as '0'
bit 15	ON: Input Capture Module Enable bit ⁽¹⁾
	1 = Module is enabled
	0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Control bit
	 1 = Halt in Idle mode 0 = Continue to operate in Idle mode
bit 12-10	Unimplemented: Read as '0'
bit 9	FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
	1 = Capture rising edge first
	0 = Capture falling edge first
bit 8	C32: 32-bit Capture Select bit
	1 = 32-bit timer resource capture
	0 = 16-bit timer resource capture
bit 7	ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')
	0 = Timer3 is the counter source for capture
	1 = Timer2 is the counter source for capture
bit 6-5	ICI<1:0>: Interrupt Control bits
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture overflow has occurred
	0 = No input capture overflow has occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	 1 = Input capture buffer is not empty; at least one more capture value can be read 0 = Input capture buffer is empty
Note 1:	When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
	STOCEN Gyole infinediately following the instruction that deals the module's ON bit.

18.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/36/44-pin
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 24. "Inter-
	Integrated Circuit (I ² C)" (DS60001116),
	which is available from the Documentation
	> Reference Manual section of the Micro-
	chip PIC32 web site
	(www.microchip.com/pic32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 18-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_	_	_	-	_	-	—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HSC = Set by Hardware; Cleared by Software					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>		
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		—	_	MONTH10	MONTH01<3:0>				
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8			DAY10)<1:0>	DAY01<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
7:0	—	—	—	_	—	V	VDAY01<2:0	>	
Legend:									
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'		
-n = Value at POR			'1' = Bit is se	ļ ,			x = Bit is un	known	

REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digit; contains a value from 0 to 9

bit 27-24 **YEAR01<3:0>:** Binary-Coded Decimal Value of Years bits, 1s place digit; contains a value from 0 to 9 bit 23-21 **Unimplemented:** Read as '0'

bit 20 **MONTH10:** Binary-Coded Decimal Value of Months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary-Coded Decimal Value of Days bits, 10s place digit; contains a value of 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 WDAY01<2:0>: Binary-Coded Decimal Value of Weekdays bits; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		_	_	_	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_		—	_
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON ⁽¹⁾	COE	CPOL ⁽²⁾	_	—	—	—	COUT
7.0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>		CREF	_	_	CCH	<1:0>

REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER

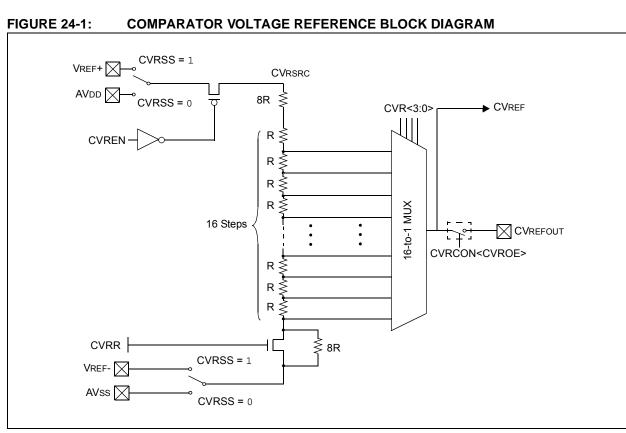
Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator ON bit⁽¹⁾
 - 1 = Module is enabled. Setting this bit does not affect the other bits in this register
 - 0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
- bit 14 **COE:** Comparator Output Enable bit
 - 1 = Comparator output is driven on the output CxOUT pin
 - 0 = Comparator output is not driven on the output CxOUT pin
- bit 13 **CPOL:** Comparator Output Inversion bit⁽²⁾
 - 1 = Output is inverted
 - 0 = Output is not inverted
- bit 12-9 Unimplemented: Read as '0'
- bit 8 **COUT:** Comparator Output bit
 - 1 = Output of the Comparator is a '1'
 - 0 = Output of the Comparator is a '0'
- bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits
 - 11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
 - 10 = Comparator interrupt is generated on a high-to-low transition of the comparator output
 - 01 = Comparator interrupt is generated on a low-to-high transition of the comparator output
 - 00 = Comparator interrupt generation is disabled
- bit 5 Unimplemented: Read as '0'
- bit 4 CREF: Comparator Positive Input Configure bit
 - 1 = Comparator non-inverting input is connected to the internal CVREF
 - 0 = Comparator non-inverting input is connected to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator
 - 11 = Comparator inverting input is connected to the IVREF
 - 10 = Comparator inverting input is connected to the CxIND pin
 - 01 = Comparator inverting input is connected to the CxINC pin
 - 00 = Comparator inverting input is connected to the CxINB pin
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

24.0 COMPARATOR VOLTAGE REFERENCE (CVREF)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the module is shown in Figure 24-1.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

26.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN (OSCCON<4>) bit is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

26.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The Peripheral Bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R	R	R	R	R	R	R	R		
31:24	VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾									
00.40	R	R	R	R	R	R	R	R		
23:16	DEVID<23:16> ⁽¹⁾									
45.0	R	R	R	R	R	R	R	R		
15:8				DEVID<	15:8> ⁽¹⁾					
7.0	R	R	R	R	R	R	R	R		
7:0				DEVID	<7:0>(1)					

REGISTER 27-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Legena.				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 DEVID<27:0>: Device ID bits⁽¹⁾

Note 1: See the "*PIC32 Flash Programming Specification*" (DS60001145) for a list of Revision and Device ID values.

DC CHA	RACTERIS	TICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$									
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions								
Power-Down Current (IPD) (Notes 1, 5)												
DC40k	44	70	μA	-40°C								
DC40I	44	70	μA	+25°C	Base Power-Down Current							
DC40n	168	259	μA	+85°C								
DC40m	335	536	μA	+105°C								
Module	Differential	Current										
DC41e	5	20	μA	3.6V	Watchdog Timer Current: AIWDT (Note 3)							
DC42e	23	50	μA	3.6V RTCC + Timer1 w/32 kHz Crystal: △IRTCC (Note 3)								
DC43d	1000	1100	μA	3.6V ADC: ΔІАDC (Notes 3,4)								

TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: The test conditions for IPD current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)

OSC2/CLKO is configured as an I/O input pin

• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8

• CPU is in Sleep mode, and SRAM data memory Wait states = 1

• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set

• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled

• All I/O pins are configured as inputs and pulled to Vss

• MCLR = VDD

• RTCC and JTAG are disabled

2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

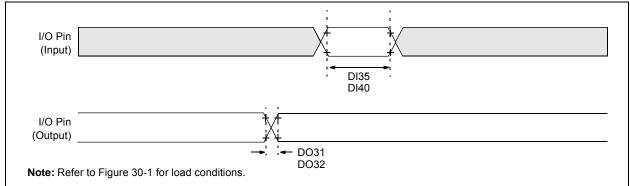
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: IPD electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

DC CHARACTERISTICS			$ \begin{array}{ c c c c c } \hline Standard Operating Conditions: 2.3V to 3.6V \\ \hline (unless otherwise stated) \\ \hline Operating temperature & -40^\circ C \leq TA \leq +85^\circ C \text{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \text{ for V-temp} \\ \hline \end{array} $				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage	_	_	0.4	V	$\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5(1)	_	_		IOH \geq -14 mA, VDD = 3.3V
DO20	Vон	I/O Pins	2.0 ⁽¹⁾	_	_	v	IOH \geq -12 mA, VDD = 3.3V
D020	VOH		2.4	_	_	v	IOH \geq -10 mA, VDD = 3.3V
			3.0(1)	—	—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR


DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0	—	2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteris	stics ⁽²⁾	ics ⁽²⁾ Min. Typical ⁽¹⁾ Max				Conditions
DO31	TIOR	Port Output Rise Tir	ne		5	15	ns	Vdd < 2.5V
					5	10	ns	Vdd > 2.5V
DO32	TIOF	Port Output Fall Tim	е	_	5	15	ns	Vdd < 2.5V
					5	10	ns	VDD > 2.5V
DI35	Tinp	INTx Pin High or Lo	w Time	10	_	_	ns	_
DI40	Trbp	CNx High or Low Tir	me (input)	2	_		TSYSCLK	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics		Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	_	μS	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	0.6	_	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	_	μS		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	_	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	—	300	ns		
IS25	TSU:DAT	DAT Data Input Setup Time	100 kHz mode	250	—	ns	—	
			400 kHz mode	100	—	ns		
			1 MHz mode (Note 1)	100	—	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode (Note 1)	0	0.3	μS		
IS30	Tsu:sta	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—	ns	Start condition	
			1 MHz mode (Note 1)	250	—	ns		
IS31	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600	—	ns	clock pulse is generated	
			1 MHz mode (Note 1)	250	—	ns		
IS33	Tsu:sto	STO Stop Condition Setup Time	100 kHz mode	4000		ns		
			400 kHz mode	600		ns]	
			1 MHz mode (Note 1)	600		ns		

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

U1OTGSTAT (USB OTG Status)	110
U1PWRC (USB Power Control)	112
U1SOF (USB SOF Threshold)	123
U1STAT (USB Status)	118
U1TOK (USB Token)	122
UxMODE (UARTx Mode)	183
UxSTA (UARTx Status and Control)	185
WDTCON (Watchdog Timer Control)	155
Resets	
Revision History	329
RTCALRM (RTC ALARM Control)	203

S

Serial Peripheral Interface (SPI)	165
Software Simulator (MPLAB SIM)	
Special Features	239

Т

Timer1 Module Timer2/3, Timer4/5 Modules Timing Diagrams	
10-Bit Analog-to-Digital Conversion	
(ASAM = 0, SSRC<2:0> = 000)	293
10-Bit Analog-to-Digital Conversion (ASAM = 1,	
SSRC<2:0> = 111, SAMC<4:0> = 00001)	294
EJTAG	300
External Clock	269
I/O Characteristics	272
I2Cx Bus Data (Master Mode)	283
I2Cx Bus Data (Slave Mode)	286
I2Cx Bus Start/Stop Bits (Master Mode)	283
I2Cx Bus Start/Stop Bits (Slave Mode)	286
Input Capture (CAPx)	276
OCx/PWM	
Output Compare (OCx)	277
Parallel Master Port Read	296
Parallel Master Port Write	297

Parallel Slave Port	. 295
SPIx Master Mode (CKE = 0)	. 278
SPIx Master Mode (CKE = 1)	. 279
SPIx Slave Mode (CKE = 0)	. 280
SPIx Slave Mode (CKE = 1)	. 281
Timer1, 2, 3, 4, 5 External Clock	. 275
UART Reception	. 187
UART Transmission (8-bit or 9-bit Data)	. 187
Timing Requirements	
CLKO and I/O	. 272
Timing Specifications	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture Requirements	
Output Compare Requirements	
Simple OCx/PWM Mode Requirements	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 280
Timing Specifications (50 MHz)	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	. 305
U	
	101

UART	
USB On-The-Go (OTG)	103
V	
VCAP nin	250

VCAP pin	
Voltage Regulator (On-Chip)	250
W	
M/M/M/ Addross	2/1

WWW Address	. 341
WWW, On-Line Support	16