Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |---------------------------|--| | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 40MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | Peripherals | Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT | | Number of I/O | 33 | | Program Memory Size | 256KB (256K x 8) | | rogram Memory Type | FLASH | | EPROM Size | - | | AM Size | 16K x 8 | | oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | ata Converters | A/D 13x10b | | scillator Type | Internal | | perating Temperature | -40°C ~ 105°C (TA) | | lounting Type | Surface Mount | | ackage / Case | 44-TQFP | | upplier Device Package | 44-TQFP (10x10) | | urchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256d-v-pt | The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file. In addition to the HI/LO targeted operations, the MIPS32 $^{\circledR}$ architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased. Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms. # 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0) In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2. TABLE 3-2: COPROCESSOR 0 REGISTERS | Register
Number | Register
Name | Function | |--------------------|-------------------------|--| | 0-6 | Reserved | Reserved in the PIC32MX1XX/2XX family core. | | 7 | HWREna | Enables access via the RDHWR instruction to selected hardware registers. | | 8 | BadVAddr ⁽¹⁾ | Reports the address for the most recent address-related exception. | | 9 | Count ⁽¹⁾ | Processor cycle count. | | 10 | Reserved | Reserved in the PIC32MX1XX/2XX family core. | | 11 | Compare ⁽¹⁾ | Timer interrupt control. | | 12 | Status ⁽¹⁾ | Processor status and control. | | 12 | IntCtl ⁽¹⁾ | Interrupt system status and control. | | 12 | SRSCtl ⁽¹⁾ | Shadow register set status and control. | | 12 | SRSMap ⁽¹⁾ | Provides mapping from vectored interrupt to a shadow set. | | 13 | Cause ⁽¹⁾ | Cause of last general exception. | | 14 | EPC ⁽¹⁾ | Program counter at last exception. | | 15 | PRId | Processor identification and revision. | | 15 | EBASE | Exception vector base register. | | 16 | Config | Configuration register. | | 16 | Config1 | Configuration Register 1. | | 16 | Config2 | Configuration Register 2. | | 16 | Config3 | Configuration Register 3. | | 17-22 | Reserved | Reserved in the PIC32MX1XX/2XX family core. | | 23 | Debug ⁽²⁾ | Debug control and exception status. | | 24 | DEPC ⁽²⁾ | Program counter at last debug exception. | | 25-29 | Reserved | Reserved in the PIC32MX1XX/2XX family core. | | 30 | ErrorEPC ⁽¹⁾ | Program counter at last error. | | 31 | DESAVE ⁽²⁾ | Debug handler scratchpad register. | Note 1: Registers used in exception processing. 2: Registers used during debug. FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX130/230 DEVICES (16 KB RAM, 64 KB FLASH) FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH) TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION | Interrupt Source ⁽¹⁾ | IRQ | Vector | | Interru | pt Bit Location | | Persistent | |-------------------------------------|-----|--------|--------------|---------------|-----------------|--------------|------------| | interrupt Source(*) | # | # | Flag | Enable | Priority | Sub-priority | Interrupt | | | | Highes | st Natural O | rder Priority | 1 | • | • | | CT – Core Timer Interrupt | 0 | 0 | IFS0<0> | IEC0<0> | IPC0<4:2> | IPC0<1:0> | No | | CS0 – Core Software Interrupt 0 | 1 | 1 | IFS0<1> | IEC0<1> | IPC0<12:10> | IPC0<9:8> | No | | CS1 – Core Software Interrupt 1 | 2 | 2 | IFS0<2> | IEC0<2> | IPC0<20:18> | IPC0<17:16> | No | | INT0 – External Interrupt | 3 | 3 | IFS0<3> | IEC0<3> | IPC0<28:26> | IPC0<25:24> | No | | T1 – Timer1 | 4 | 4 | IFS0<4> | IEC0<4> | IPC1<4:2> | IPC1<1:0> | No | | IC1E - Input Capture 1 Error | 5 | 5 | IFS0<5> | IEC0<5> | IPC1<12:10> | IPC1<9:8> | Yes | | IC1 – Input Capture 1 | 6 | 5 | IFS0<6> | IEC0<6> | IPC1<12:10> | IPC1<9:8> | Yes | | OC1 – Output Compare 1 | 7 | 6 | IFS0<7> | IEC0<7> | IPC1<20:18> | IPC1<17:16> | No | | INT1 – External Interrupt 1 | 8 | 7 | IFS0<8> | IEC0<8> | IPC1<28:26> | IPC1<25:24> | No | | T2 – Timer2 | 9 | 8 | IFS0<9> | IEC0<9> | IPC2<4:2> | IPC2<1:0> | No | | IC2E – Input Capture 2 | 10 | 9 | IFS0<10> | IEC0<10> | IPC2<12:10> | IPC2<9:8> | Yes | | IC2 – Input Capture 2 | 11 | 9 | IFS0<11> | IEC0<11> | IPC2<12:10> | IPC2<9:8> | Yes | | OC2 – Output Compare 2 | 12 | 10 | IFS0<12> | IEC0<12> | IPC2<20:18> | IPC2<17:16> | No | | INT2 – External Interrupt 2 | 13 | 11 | IFS0<13> | IEC0<13> | IPC2<28:26> | IPC2<25:24> | No | | T3 – Timer3 | 14 | 12 | IFS0<14> | IEC0<14> | IPC3<4:2> | IPC3<1:0> | No | | IC3E – Input Capture 3 | 15 | 13 | IFS0<15> | IEC0<15> | IPC3<12:10> | IPC3<9:8> | Yes | | IC3 – Input Capture 3 | 16 | 13 | IFS0<16> | IEC0<16> | IPC3<12:10> | IPC3<9:8> | Yes | | OC3 – Output Compare 3 | 17 | 14 | IFS0<17> | IEC0<17> | IPC3<20:18> | IPC3<17:16> | No | | INT3 – External Interrupt 3 | 18 | 15 | IFS0<18> | IEC0<18> | IPC3<28:26> | IPC3<25:24> | No | | T4 – Timer4 | 19 | 16 | IFS0<19> | IEC0<19> | IPC4<4:2> | IPC4<1:0> | No | | IC4E – Input Capture 4 Error | 20 | 17 | IFS0<20> | IEC0<20> | IPC4<12:10> | IPC4<9:8> | Yes | | IC4 – Input Capture 4 | 21 | 17 | IFS0<21> | IEC0<21> | IPC4<12:10> | IPC4<9:8> | Yes | | OC4 – Output Compare 4 | 22 | 18 | IFS0<22> | IEC0<22> | IPC4<20:18> | IPC4<17:16> | No | | INT4 – External Interrupt 4 | 23 | 19 | IFS0<23> | IEC0<23> | IPC4<28:26> | IPC4<25:24> | No | | T5 – Timer5 | 24 | 20 | IFS0<24> | IEC0<24> | IPC5<4:2> | IPC5<1:0> | No | | IC5E – Input Capture 5 Error | 25 | 21 | IFS0<25> | IEC0<25> | IPC5<12:10> | IPC5<9:8> | Yes | | IC5 – Input Capture 5 | 26 | 21 | IFS0<26> | IEC0<26> | IPC5<12:10> | IPC5<9:8> | Yes | | OC5 – Output Compare 5 | 27 | 22 | IFS0<27> | IEC0<27> | IPC5<20:18> | IPC5<17:16> | No | | AD1 – ADC1 Convert done | 28 | 23 | IFS0<28> | IEC0<28> | IPC5<28:26> | IPC5<25:24> | Yes | | FSCM – Fail-Safe Clock Monitor | 29 | 24 | IFS0<29> | IEC0<29> | IPC6<4:2> | IPC6<1:0> | No | | RTCC – Real-Time Clock and Calendar | 30 | 25 | IFS0<30> | IEC0<30> | IPC6<12:10> | IPC6<9:8> | No | | FCE – Flash Control Event | 31 | 26 | IFS0<31> | IEC0<31> | IPC6<20:18> | IPC6<17:16> | No | | CMP1 – Comparator Interrupt | 32 | 27 | IFS1<0> | IEC1<0> | IPC6<28:26> | IPC6<25:24> | No | | CMP2 – Comparator Interrupt | 33 | 28 | IFS1<1> | IEC1<1> | IPC7<4:2> | IPC7<1:0> | No | | CMP3 – Comparator Interrupt | 34 | 29 | IFS1<2> | IEC1<2> | IPC7<12:10> | IPC7<9:8> | No | | USB – USB Interrupts | 35 | 30 | IFS1<3> | IEC1<3> | IPC7<20:18> | IPC7<17:16> | Yes | | SPI1E – SPI1 Fault | 36 | 31 | IFS1<4> | IEC1<4> | IPC7<28:26> | IPC7<25:24> | Yes | | SPI1RX – SPI1 Receive Done | 37 | 31 | IFS1<5> | IEC1<5> | IPC7<28:26> | IPC7<25:24> | Yes | | SPI1TX – SPI1 Transfer Done | 38 | 31 | IFS1<6> | IEC1<6> | IPC7<28:26> | IPC7<25:24> | Yes | Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals. #### REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | | _ | _ | | 45.0 | U-0 | U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | | 15:8 | _ | _ | _ | MVEC — TPC<2:0> | | TPC<2:0> | | | | 7:0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 7:0 | _ | _ | _ | INT4EP | INT3EP | INT2EP | INT1EP | INT0EP | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 **Unimplemented:** Read as '0' bit 15-13 **Unimplemented:** Read as '0' bit 12 MVEC: Multi Vector Configuration bit 1 = Interrupt controller configured for Multi-vectored mode 0 = Interrupt controller configured for Single-vectored mode bit 11 Unimplemented: Read as '0' bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits 111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer 110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer 101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer 100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer 011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer 010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer 001 = Interrupts of group priority 1 start the Interrupt Proximity timer 000 = Disables Interrupt Proximity timer bit 7-5 **Unimplemented:** Read as '0' bit 4 **INT4EP:** External Interrupt 4 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit 1 = Rising edge0 = Falling edge bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge bit 0 **INTOEP:** External Interrupt 0 Edge Polarity Control bit 1 = Rising edge 0 = Falling edge #### REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24:24 | R/W-0 | 31:24 | IFS31 | IFS30 | IFS29 | IFS28 | IFS27 | IFS26 | IFS25 | IFS24 | | 23:16 | R/W-0 | 23.10 | IFS23 | IFS22 | IFS21 | IFS20 | IFS19 | IFS18 | IFS17 | IFS16 | | 15.0 | R/W-0 | 15:8 | IFS15 | IFS14 | IFS13 | IFS12 | IFS11 | IFS10 | IFS09 | IFS08 | | 7:0 | R/W-0 | 7.0 | IFS07 | IFS06 | IFS05 | IFS04 | IFS03 | IFS02 | IFS01 | IFS00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IFS31-IFS00: Interrupt Flag Status bits 1 = Interrupt request has occurred 0 = No interrupt request has occurred Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions. #### REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | R/W-0 | 31:24 | IEC31 | IEC30 | IEC29 | IEC28 | IEC27 | IEC26 | IEC25 | IEC24 | | 23:16 | R/W-0 | 23.10 | IEC23 | IEC22 | IEC21 | IEC20 | IEC19 | IEC18 | IEC17 | IEC16 | | 15:8 | R/W-0 | 15.6 | IEC15 | IEC14 | IEC13 | IEC12 | IEC11 | IEC10 | IEC09 | IEC08 | | 7:0 | R/W-0 | 7:0 | IEC07 | IEC06 | IEC05 | IEC04 | IEC03 | IEC02 | IEC01 | IEC00 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 IEC31-IEC00: Interrupt Enable bits 1 = Interrupt is enabled0 = Interrupt is disabled **Note:** This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions. ### 9.1 DMA Control Registers #### TABLE 9-1: DMA GLOBAL REGISTER MAP | ess | | | | | | | | | | Bi | ts | | | | | | | | ω, | |-----------------------------|------------|-----------|---------------|-------|-------|---------|---------|-------|------|------|------|------|------|------|------|------|-----------|------|------------| | Virtual Address
(BF88_#) | | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 2000 | DMACON | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3000 | DIVIACON | 15:0 | ON | - | _ | SUSPEND | DMABUSY | | _ | _ | _ | _ | _ | - | - | _ | _ | _ | 0000 | | 3010 | DMASTAT | 31:16 | _ | | _ | _ | _ | _ | I | I | I | _ | _ | | | I | _ | | 0000 | | 3010 | DIVIASTAT | 15:0 | _ | ı | 1 | _ | _ | | I | I | I | _ | | I | RDWR | DI | MACH<2:0> | (2) | 0000 | | 3020 | DMAADDR | 31:16 | DMAADDR<31:0> | | | | | | | | | | | | | | | | | | 3020 | DIVIDADDIX | 15:0 | 0000 | | | | | | | | | | | | | | | | | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information #### TABLE 9-2: DMA CRC REGISTER MAP | ess | | | | | | | | | | Ві | ts | | | | | | | | | |-----------------------------|---------------------------------|-----------|-------|---------------|----------------|-------|------------------|-----------|------|--------|-----------|--------|--------|------|------|------|----------|------|------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 2020 | DCRCCON | 31:16 | _ | _ | BYTO | <1:0> | :1:0> WBO — BITC | | | | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 3030 | DCRCCON | 15:0 | _ | _ | _ | | | PLEN<4:0> | | | CRCEN | CRCAPP | CRCTYP | _ | _ | C | RCCH<2:0 | > | 0000 | | 2040 | DCRCDATA | 31:16 | | | | | | | | DCBCDA | TA ~21:0> | | | | | | | | 0000 | | 3040 | DCKCDAIA | 15:0 | | | DCRCDATA<31:0> | | | | | | | | | | | | | | | | 3050 | DCRCXOR | 31:16 | | DCRCYOR<31:0> | | | | | | | | | | | | | | | | | 3030 | DCKCXOK | 15:0 | | DCRCXOR<31:0> | | | | | | | | | | | | | | | | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. #### 11.0 **I/O PORTS** Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 12.** "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Key features of this module include: - · Individual output pin open-drain enable/disable - · Individual input pin weak pull-up and pull-down - Monitor selective inputs and generate interrupt when change in pin state is detected - · Operation during Sleep and Idle modes - Fast bit manipulation using CLR, SET, and INV registers Figure 11-1 illustrates a block diagram of a typical multiplexed I/O port. FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE #### REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | - | _ | - | - | _ | | 22:46 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | R/W-0 | U-0 | R/W-0 | R/W-0 | R-0 | U-0 | U-0 | U-0 | | 15.6 | ON ⁽¹⁾ | _ | SIDL | TWDIS | TWIP | _ | _ | _ | | 7:0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | U-0 | | 7:0 | TGATE | _ | TCKPS | S<1:0> | _ | TSYNC | TCS | _ | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** Timer On bit⁽¹⁾ 1 = Timer is enabled 0 = Timer is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit ${\tt 1}$ = Discontinue module operation when the device enters Idle mode 0 = Continue module operation when the device enters Idle mode bit 12 **TWDIS:** Asynchronous Timer Write Disable bit 1 = Writes to Timer1 are ignored until pending write operation completes 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality) bit 11 TWIP: Asynchronous Timer Write in Progress bit In Asynchronous Timer mode: 1 = Asynchronous write to the Timer1 register in progress 0 = Asynchronous write to Timer1 register is complete In Synchronous Timer mode: This bit is read as '0'. bit 10-8 Unimplemented: Read as '0' bit 7 TGATE: Timer Gated Time Accumulation Enable bit $\frac{\text{When TCS} = 1:}{\text{This bit is ignored.}}$ When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 6 Unimplemented: Read as '0' bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. #### REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY) | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit 26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|------------------|------------------| | Kange | 31/23/13/1 | 30/22/14/0 | 29/21/13/3 | 20/20/12/4 | 21/19/11/3 | 20/10/10/2 | 23/1//3/1 | 24/10/0/0 | | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R-0 | R/W-0, HSC | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | | 15:8 | IBF | IBOV | - | - | IB3F | IB2F | IB1F | IB0F | | 7.0 | R-1 | R/W-0, HSC | U-0 | U-0 | R-1 | R-1 | R-1 | R-1 | | 7:0 | OBE | OBUF | _ | _ | OB3E | OB2E | OB1E | OB0E | **Legend:** HSC = Set by Hardware; Cleared by Software R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 14 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte buffer occurred (must be cleared in software) 0 = No overflow occurred bit 13-12 Unimplemented: Read as '0' bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input Buffer does not contain any unread data bit 7 **OBE:** Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full bit 6 **OBUF:** Output Buffer Underflow Status bit 1 = A read occurred from an empty output byte buffer (must be cleared in software) 0 = No underflow occurred bit 5-4 Unimplemented: Read as '0' bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted | PIC32M | X1XX/2X | (X 28/3 | 6/44-PI | NFAM | ILY | | |--------|---------|---------|---------|------|-----|--| | NOTES: | #### 27.0 SPECIAL FEATURES Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and "Programming and Diagnostics" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). PIC32MX1XX/2XX 28/36/44-pin Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components. - · Flexible device configuration - Joint Test Action Group (JTAG) interface - In-Circuit Serial Programming™ (ICSP™) #### 27.1 Configuration Bits The Configuration bits can be programmed using the following registers to select various device configurations. - DEVCFG0: Device Configuration Word 0 - DEVCFG1: Device Configuration Word 1 - DEVCFG2: Device Configuration Word 2 - DEVCFG3: Device Configuration Word 3 - · CFGCON: Configuration Control Register In addition, the DEVID register (Register 27-6) provides device and revision information. | PIC32MX1 | XX/2XX | 28/36/4 | 4-PIN | FAMILY | | |----------|--------|---------|-------|--------|--| | NOTES: | #### 30.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX1XX/2XX 28/36/44-pin Family electrical characteristics for devices that operate at 40 MHz. Refer to **Section 31.0** "**50 MHz Electrical Characteristics**" for additional specifications for operations at higher frequency. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX1XX/2XX 28/36/44-pin Family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. #### **Absolute Maximum Ratings** #### (See Note 1) | Ambient temperature under bias | 40°C to +105°C | |---|--------------------------| | Storage temperature | 65°C to +150°C | | Voltage on VDD with respect to Vss | 0.3V to +4.0V | | Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3) | 0.3V to (VDD + 0.3V) | | Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 2.3V$ (Note 3) | 0.3V to +5.5V | | Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3) | 0.3V to +3.6V | | Voltage on D+ or D- pin with respect to Vusb3v3 | 0.3V to (VUSB3V3 + 0.3V) | | Voltage on VBUS with respect to VSS | 0.3V to +5.5V | | Maximum current out of Vss pin(s) | 300 mA | | Maximum current into VDD pin(s) (Note 2) | 300 mA | | Maximum output current sunk by any I/O pin | 15 mA | | Maximum output current sourced by any I/O pin | 15 mA | | Maximum current sunk by all ports | 200 mA | | Maximum current sourced by all ports (Note 2) | 200 mA | - Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2). - 3: See the "Pin Diagrams" section for the 5V tolerant pins. TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IDLE) | DC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | | | |---|------------------------|------|------------------|-----------------|------|---------------|--|--| | Parameter
No. | Typical ⁽²⁾ | Max. | Units Conditions | | | | | | | Idle Current (IDLE): Core Off, Clock on Base Current (Notes 1, 4) | | | | | | | | | | DC30a | 1 | 1.5 | mA | 4 MHz (Note 3) | | | | | | DC31a | 2 | 3 | mA | 10 MHz | | | | | | DC32a | 4 | 6 | mA | 20 MHz (Note 3) | | | | | | DC33a | 5.5 | 8 | mA | 30 MHz (Note 3) | | | | | | DC34a | 7.5 | 11 | mA | 40 MHz | | | | | | DC37a | 100 | _ | μA | -40°C | | LPRC (31 kHz) | | | | DC37b | 250 | _ | μA | +25°C | 3.3V | (Note 3) | | | | DC37c | 380 | _ | μA | +85°C | | | | | **Note 1:** The test conditions for IIDLE current measurements are as follows: - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required) - OSC2/CLKO is configured as an I/O input pin - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8 - CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 - No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared - · WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled - · All I/O pins are configured as inputs and pulled to Vss - MCLR = VDD - · RTCC and JTAG are disabled - **2:** Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 3: This parameter is characterized, but not tested in manufacturing. - 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information. TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS | DC CHARACTERISTICSStandard Operating Conditions: 2.3V to 3.6V (unless oth Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industria $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temperature | | | | ≤ +85°C for Industrial | | | | |--|--------|---|--|------------------------|---------------------|------------|--| | Param.
No. | Symbol | Characteristics | Min. Typ. ⁽¹⁾ Max. Units Conditions | | | Conditions | | | DI60a | licl | Input Low Injection
Current | 0 | _ | ₋₅ (2,5) | mA | This parameter applies to all pins, with the exception of the power pins. | | DI60b | lich | Input High Injection
Current | 0 | _ | +5(3,4,5) | mA | This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins. | | DI60c | ∑lict | Total Input Injection
Current (sum of all I/O
and Control pins) | ₋₂₀ (6) | | +20(6) | mA | Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT) | - **Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 2: VIL source < (Vss 0.3). Characterized but not tested. - 3: VIH source > (VDD + 0.3) for non-5V tolerant pins only. - **4:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current. - 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., ViH Source > (VDD + 0.3) or ViL source < (Vss 0.3)). - 6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If **Note 2**, IICL = (((Vss 0.3) VIL source) / Rs). If **Note 3**, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0. FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +105^{\circ}\text{C}$ for V-temp | | | | | |--------------------|-----------------------|---|--|---|------------|----|--------------------| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. Typ. ⁽²⁾ Max. Units Conditions | | Conditions | | | | SP70 | TscL | SCKx Input Low Time (Note 3) | Tsck/2 | _ | | ns | _ | | SP71 | TscH | SCKx Input High Time (Note 3) | Tsck/2 | _ | _ | ns | _ | | SP72 | TscF | SCKx Input Fall Time | _ | _ | _ | ns | See parameter DO32 | | SP73 | TscR | SCKx Input Rise Time | _ | _ | _ | ns | See parameter DO31 | | SP30 | TDOF | SDOx Data Output Fall Time (Note 4) | _ | _ | | ns | See parameter DO32 | | SP31 | TDOR | SDOx Data Output Rise Time (Note 4) | _ | _ | | ns | See parameter DO31 | | SP35 | TscH2DoV, | SDOx Data Output Valid after | _ | _ | 15 | ns | VDD > 2.7V | | | TscL2doV | SCKx Edge | _ | _ | 20 | ns | VDD < 2.7V | | SP40 | TDIV2SCH,
TDIV2SCL | Setup Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | | SP41 | TSCH2DIL,
TSCL2DIL | Hold Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | | SP50 | TssL2scH,
TssL2scL | SSx ↓ to SCKx ↑ or SCKx Input | 175 | _ | _ | ns | _ | | SP51 | TssH2DoZ | SSx ↑ to SDOx Output
High-Impedance (Note 3) | 5 | _ | 25 | ns | _ | | SP52 | TscH2ssH
TscL2ssH | SSx after SCKx Edge | Tsck + 20 | _ | _ | ns | _ | - Note 1: These parameters are characterized, but not tested in manufacturing. - 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 3: The minimum clock period for SCKx is 50 ns. - 4: Assumes 50 pF load on all SPIx pins. TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS | DC CHARACTERISTICS | | | Standard Operating Conditions (see Note 3):2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +105^{\circ}\text{C}$ for V-temp | | | | | |--------------------|-------------------------|--|--|-------|------|-------|----------------------------------| | Param
No. | Symbol | Characteristic | Min. | Тур. | Max. | Units | Conditions | | CTMU CUR | RENT SOUR | CE | | | | | | | CTMUI1 | Iout1 | Base Range ⁽¹⁾ | _ | 0.55 | _ | μΑ | CTMUCON<9:8> = 01 | | CTMUI2 | IOUT2 | 10x Range ⁽¹⁾ | _ | 5.5 | _ | μΑ | CTMUCON<9:8> = 10 | | CTMUI3 | Іоит3 | 100x Range ⁽¹⁾ | _ | 55 | _ | μA | CTMUCON<9:8> = 11 | | CTMUI4 | Iout4 | 1000x Range ⁽¹⁾ | _ | 550 | _ | μΑ | CTMUCON<9:8> = 00 | | CTMUFV1 | VF | Temperature Diode Forward Voltage ^(1,2) | | 0.598 | | V | TA = +25°C,
CTMUCON<9:8> = 01 | | | | | _ | 0.658 | _ | V | TA = +25°C,
CTMUCON<9:8> = 10 | | | | | _ | 0.721 | _ | V | TA = +25°C,
CTMUCON<9:8> = 11 | | CTMUFV2 | VFVR | Temperature Diode Rate of | _ | -1.92 | _ | mV/ºC | CTMUCON<9:8> = 01 | | | Change ^(1,2) | | _ | -1.74 | | mV/ºC | CTMUCON<9:8> = 10 | | | | | _ | -1.56 | _ | mV/ºC | CTMUCON<9:8> = 11 | - Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000). - 2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions: - VREF+ = AVDD = 3.3V - ADC module configured for conversion speed of 500 ksps - All PMD bits are cleared (PMDx = 0) - Executing a while(1) statement - · Device operating from the FRC with no PLL - **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. #### APPENDIX A: REVISION HISTORY #### Revision A (May 2011) This is the initial released version of this document. #### **Revision B (October 2011)** The following two global changes are included in this revision: - All packaging references to VLAP have been changed to VTLA throughout the document - · All references to VCORE have been removed - All occurrences of the ASCL1, ASCL2, ASDA1, and ASDA2 pins have been removed - V-temp temperature range (-40°C to +105°C) was added to all electrical specification tables This revision includes the addition of the following devices: - PIC32MX130F064B - PIC32MX230F064B - PIC32MX130F064C - PIC32MX230F064C - PIC32MX130F064D - PIC32MX230F064D - PIC32MX150F128B - PIC32MX250F128B - PIC32MX150F128C - PIC32MX250F128C - PIC32MX150F128D - PIC32MX250F128D Text and formatting changes were incorporated throughout the document. All other major changes are referenced by their respective section in Table A-1. #### TABLE A-1: MAJOR SECTION UPDATES | Section | Update Description | |---|---| | "32-bit Microcontrollers (up to 128 KB Flash and 32 KB SRAM) with Audio | Split the existing Features table into two: PIC32MX1XX General Purpose Family Features (Table 1) and PIC32MX2XX USB Family Features (Table 2). | | and Graphics Interfaces, USB, and Advanced Analog" | Added the SPDIP package reference (see Table 1, Table 2, and "Pin Diagrams"). | | | Added the new devices to the applicable pin diagrams. | | | Changed PGED2 to PGED1 on pin 35 of the 36-pin VTLA diagram for PIC32MX220F032C, PIC32MX220F016C, PIC32MX230F064C, and PIC32MX250F128C devices. | | 1.0 "Device Overview" | Added the SPDIP package reference and updated the pin number for AN12 for 44-pin QFN devices in the Pinout I/O Descriptions (see Table 1-1). | | | Added the PGEC4/PGED4 pin pair and updated the C1INA-C1IND and C2INA-C2IND pin numbers for 28-pin SSOP/SPDIP/SOIC devices in the Pinout I/O Descriptions (see Table 1-1). | | 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers" | Updated the Recommended Minimum Connection diagram (see Figure 2-1). | ### **Revision F (February 2014)** This revision includes the addition of the following devices: • PIC32MX170F256B • PIC32MX270F256B • PIC32MX170F256D • PIC32MX270F256D In addition, this revision includes the following major changes as described in Table A-5, as well as minor updates to text and formatting, which were incorporated throughout the document. #### TABLE A-5: MAJOR SECTION UPDATES | Section | Update Description | |---|---| | 32-bit Microcontrollers (up to 256 | Added new devices to the family features (see Table 1 and Table 2). | | KB Flash and 64 KB SRAM) with | Updated pin diagrams to include new devices (see "Pin Diagrams"). | | Audio and Graphics Interfaces, USB, and Advanced Analog | | | 1.0 "Device Overview" | Added Note 3 reference to the following pin names: VBUS, VUSB3V3, VBUSON, | | 1.0 Bevice overview | D+, D-, and USBID. | | 2.0 "Guidelines for Getting | Replaced Figure 2-1: Recommended Minimum Connection. | | Started with 32-bit MCUs" | Updated Figure 2-2: MCLR Pin Connections. | | | Added 2.9 "Sosc Design Recommendation". | | 4.0 "Memory Organization" | Added memory tables for devices with 64 KB RAM (see Table 4-4 through Table 4-5). | | | Changed the Virtual Addresses for all registers and updated the PWP bits in the DEVCFG: Device Configuration Word Summary (see Table 4-17). | | | Updated the ODCA, ODCB, and ODCC port registers (see Table 4-19, Table 4-20, and Table 4-21). | | | The RTCTIME, RTCDATE, ALRMTIME, and ALRMDATE registers were updated (see Table 4-25). | | | Added Data Ram Size value for 64 KB RAM devices (see Register 4-5). | | | Added Program Flash Size value for 256 KB Flash devices (see Register 4-5). | | 12.0 "Timer1" | The Timer1 block diagram was updated to include the 16-bit data bus (see Figure 12-1). | | 13.0 "Timer2/3, Timer4/5" | The Timer2-Timer5 block diagram (16-bit) was updated to include the 16-bit data bus (see Figure 13-1). | | | The Timer2/3, Timer4/5 block diagram (32-bit) was updated to include the 32-bit data bus (see Figure 13-1). | | 19.0 "Parallel Master Port (PMP)" | The CSF<1:0> bit value definitions for '00' and '01' were updated (see Register 19-1). | | | Bit 14 in the Parallel Port Address register (PMADDR) was updated (see Register 19-3). | | 20.0 "Real-Time Clock and | The following registers were updated: | | Calendar (RTCC)" | RTCTIME (see Register 20-3) | | | RTCDATE (see Register 20-4) | | | ALRMTIME (see Register 20-5) | | | ALRMDATE (see Register 20-6) | | 26.0 "Special Features" | Updated the PWP bits (see Register 26-1). | | 29.0 "Electrical Characteristics" | Added parameters DO50 and DO50a to the Capacitive Loading Requirements on Output Pins (see Table 29-14). | | | Added Note 5 to the IDD DC Characteristics (see Table 29-5). | | | Added Note 4 to the IIDLE DC Characteristics (see Table 29-6). | | | Added Note 5 to the IPD DC Characteristics (see Table 29-7). | | | Updated the conditions for parameters USB321 (VoL) and USB322 (VoH) in the OTG Electrical Specifications (see Table 29-38). | | Product Identification System | Added 40 MHz speed information. |