

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                    |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 40MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                   |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                    |
| Number of I/O              | 33                                                                              |
| Program Memory Size        | 256KB (256K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                     |
| Data Converters            | A/D 13x10b                                                                      |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 44-VQFN Exposed Pad                                                             |
| Supplier Device Package    | 44-QFN (8x8)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx230f256dt-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

|          |                   | Pin Nu                            | mber <sup>(1)</sup> |                                 |             |                |                                                                                                 |  |  |  |  |
|----------|-------------------|-----------------------------------|---------------------|---------------------------------|-------------|----------------|-------------------------------------------------------------------------------------------------|--|--|--|--|
| Pin Name | 28-pin<br>QFN     | 28-pin<br>SSOP/<br>SPDIP/<br>SOIC | 36-pin<br>VTLA      | 44-pin<br>QFN/<br>TQFP/<br>VTLA | Pin<br>Type | Buffer<br>Type | Description                                                                                     |  |  |  |  |
| PMA0     | 7                 | 10                                | 8                   | 3                               | I/O         | TTL/ST         | Parallel Master Port Address bit 0 input<br>(Buffered Slave modes) and output<br>(Master modes) |  |  |  |  |
| PMA1     | 9                 | 12                                | 10                  | 2                               | I/O         | TTL/ST         | Parallel Master Port Address bit 1 input<br>(Buffered Slave modes) and output<br>(Master modes) |  |  |  |  |
| PMA2     |                   | _                                 | _                   | 27                              | 0           | _              | Parallel Master Port address                                                                    |  |  |  |  |
| PMA3     |                   |                                   |                     | 38                              | 0           | —              | (Demultiplexed Master modes)                                                                    |  |  |  |  |
| PMA4     |                   |                                   |                     | 37                              | 0           | —              |                                                                                                 |  |  |  |  |
| PMA5     |                   | _                                 | _                   | 4                               | 0           | _              |                                                                                                 |  |  |  |  |
| PMA6     |                   | _                                 | _                   | 5                               | 0           | _              |                                                                                                 |  |  |  |  |
| PMA7     |                   |                                   |                     | 13                              | 0           | —              |                                                                                                 |  |  |  |  |
| PMA8     |                   | _                                 | _                   | 32                              | 0           | _              |                                                                                                 |  |  |  |  |
| PMA9     |                   | _                                 | _                   | 35                              | 0           | _              |                                                                                                 |  |  |  |  |
| PMA10    |                   | _                                 | _                   | 12                              | 0           | _              |                                                                                                 |  |  |  |  |
| PMCS1    | 23                | 26                                | 29                  | 15                              | 0           | _              | Parallel Master Port Chip Select 1 strobe                                                       |  |  |  |  |
|          | 20 <sup>(2)</sup> | 23 <sup>(2)</sup>                 | 26 <sup>(2)</sup>   | 10 <sup>(2)</sup>               | 1/0         | TTI /CT        | Parallel Master Port data (Demultiplexed                                                        |  |  |  |  |
|          | 1 <sup>(3)</sup>  | 4 <sup>(3)</sup>                  | 35 <sup>(3)</sup>   | 21 <sup>(3)</sup>               | 1/0         | 111/31         | Master mode) or address/data                                                                    |  |  |  |  |
|          | 19 <b>(2)</b>     | 22 <sup>(2)</sup>                 | 25 <sup>(2)</sup>   | 9(2)                            | 1/0         | TTI /CT        | (Multiplexed Master modes)                                                                      |  |  |  |  |
|          | 2 <sup>(3)</sup>  | 5 <sup>(3)</sup>                  | 36 <sup>(3)</sup>   | 22 <sup>(3)</sup>               | 1/0         | 111/31         |                                                                                                 |  |  |  |  |
|          | 18 <sup>(2)</sup> | 21 <sup>(2)</sup>                 | 24 <sup>(2)</sup>   | 8 <sup>(2)</sup>                | 1/0         | TTI /ST        |                                                                                                 |  |  |  |  |
|          | 3(3)              | 6 <sup>(3)</sup>                  | 1 <sup>(3)</sup>    | 23 <sup>(3)</sup>               | 1/0         | 116/01         |                                                                                                 |  |  |  |  |
| PMD3     | 15                | 18                                | 19                  | 1                               | I/O         | TTL/ST         |                                                                                                 |  |  |  |  |
| PMD4     | 14                | 17                                | 18                  | 44                              | I/O         | TTL/ST         |                                                                                                 |  |  |  |  |
| PMD5     | 13                | 16                                | 17                  | 43                              | I/O         | TTL/ST         |                                                                                                 |  |  |  |  |
| PMD6     | 12 <sup>(2)</sup> | 15 <sup>(2)</sup>                 | 16 <sup>(2)</sup>   | 42 <sup>(2)</sup>               | 1/0         | TTI /CT        | 1                                                                                               |  |  |  |  |
|          | 28 <sup>(3)</sup> | 3(3)                              | 34 <b>(3)</b>       | 20 <sup>(3)</sup>               | 1/0         | 111/31         |                                                                                                 |  |  |  |  |
| PMD7     | 11(2)             | 14 <sup>(2)</sup>                 | 15 <b>(2)</b>       | 41 <sup>(2)</sup>               | 1/0         | TTI /ST        |                                                                                                 |  |  |  |  |
|          | 27 <sup>(3)</sup> | 2 <sup>(3)</sup>                  | 33 <b>(3)</b>       | 19 <sup>(3)</sup>               | 1/0         | 112/01         |                                                                                                 |  |  |  |  |
| PMRD     | 21                | 24                                | 27                  | 11                              | 0           | —              | Parallel Master Port read strobe                                                                |  |  |  |  |
|          | 22 <sup>(2)</sup> | 25 <sup>(2)</sup>                 | 28 <sup>(2)</sup>   | 14 <sup>(2)</sup>               | 0           |                | Parallel Master Port write strope                                                               |  |  |  |  |
|          | 4 <sup>(3)</sup>  | 7 <sup>(3)</sup>                  | 2 <sup>(3)</sup>    | 24 <sup>(3)</sup>               | Ŭ           |                | T arallel master Fort while strobe                                                              |  |  |  |  |
| VBUS     | 12 <sup>(3)</sup> | 15 <sup>(3)</sup>                 | 16 <b>(3)</b>       | 42 <sup>(3)</sup>               | Ι           | Analog         | USB bus power monitor                                                                           |  |  |  |  |
| VUSB3V3  | 20 <sup>(3)</sup> | 23 <sup>(3)</sup>                 | 26 <sup>(3)</sup>   | 10 <sup>(3)</sup>               | Р           | _              | USB internal transceiver supply. This pin must be connected to VDD.                             |  |  |  |  |
| VBUSON   | 22 <sup>(3)</sup> | 25 <sup>(3)</sup>                 | 28 <sup>(3)</sup>   | 14 <sup>(3)</sup>               | 0           |                | USB Host and OTG bus power control<br>output                                                    |  |  |  |  |
| D+       | 18 <sup>(3)</sup> | 21 <sup>(3)</sup>                 | 24 <sup>(3)</sup>   | 8 <sup>(3)</sup>                | I/O         | Analog         | USB D+                                                                                          |  |  |  |  |
| D-       | 19 <sup>(3)</sup> | 22 <sup>(3)</sup>                 | 25 <sup>(3)</sup>   | 9(3)                            | I/O         | Analog         | USB D-                                                                                          |  |  |  |  |
| Legend:  | CMOS = C          | MOS compa                         | atible input        | or output                       |             | Analog =       | Analog input P = Power                                                                          |  |  |  |  |
|          | ST = Schmi        | tt Trigger in                     | put with CN         | NOS levels                      |             | O = Outp       | but I=Input                                                                                     |  |  |  |  |
|          | L  =   L          | nput buffer                       |                     |                                 |             | PPS = P        | eripheral Pin Select — = N/A                                                                    |  |  |  |  |

#### 

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32<sup>®</sup> architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then

adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

## 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

| Register<br>Number | Register<br>Name        | Function                                                                 |
|--------------------|-------------------------|--------------------------------------------------------------------------|
| 0-6                | Reserved                | Reserved in the PIC32MX1XX/2XX family core.                              |
| 7                  | HWREna                  | Enables access via the RDHWR instruction to selected hardware registers. |
| 8                  | BadVAddr <sup>(1)</sup> | Reports the address for the most recent address-related exception.       |
| 9                  | Count <sup>(1)</sup>    | Processor cycle count.                                                   |
| 10                 | Reserved                | Reserved in the PIC32MX1XX/2XX family core.                              |
| 11                 | Compare <sup>(1)</sup>  | Timer interrupt control.                                                 |
| 12                 | Status <sup>(1)</sup>   | Processor status and control.                                            |
| 12                 | IntCtl <sup>(1)</sup>   | Interrupt system status and control.                                     |
| 12                 | SRSCtl <sup>(1)</sup>   | Shadow register set status and control.                                  |
| 12                 | SRSMap <sup>(1)</sup>   | Provides mapping from vectored interrupt to a shadow set.                |
| 13                 | Cause <sup>(1)</sup>    | Cause of last general exception.                                         |
| 14                 | EPC <sup>(1)</sup>      | Program counter at last exception.                                       |
| 15                 | PRId                    | Processor identification and revision.                                   |
| 15                 | EBASE                   | Exception vector base register.                                          |
| 16                 | Config                  | Configuration register.                                                  |
| 16                 | Config1                 | Configuration Register 1.                                                |
| 16                 | Config2                 | Configuration Register 2.                                                |
| 16                 | Config3                 | Configuration Register 3.                                                |
| 17-22              | Reserved                | Reserved in the PIC32MX1XX/2XX family core.                              |
| 23                 | Debug <sup>(2)</sup>    | Debug control and exception status.                                      |
| 24                 | DEPC <sup>(2)</sup>     | Program counter at last debug exception.                                 |
| 25-29              | Reserved                | Reserved in the PIC32MX1XX/2XX family core.                              |
| 30                 | ErrorEPC <sup>(1)</sup> | Program counter at last error.                                           |
| 31                 | DESAVE <sup>(2)</sup>   | Debug handler scratchpad register.                                       |

## TABLE 3-2: COPROCESSOR 0 REGISTERS

**Note 1:** Registers used in exception processing.

**2:** Registers used during debug.



## FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

## TABLE 4-1: SFR MEMORY MAP

|                           | Virtual Ac | ddress          |
|---------------------------|------------|-----------------|
| Peripheral                | Base       | Offset<br>Start |
| Watchdog Timer            |            | 0x0000          |
| RTCC                      |            | 0x0200          |
| Timer1-5                  |            | 0x0600          |
| Input Capture 1-5         |            | 0x2000          |
| Output Compare 1-5        |            | 0x3000          |
| IC1 and IC2               |            | 0x5000          |
| SPI1 and SPI2             |            | 0x5800          |
| UART1 and UART2           |            | 0x6000          |
| PMP                       |            | 0x7000          |
| ADC                       | 0xBF80     | 0x9000          |
| CVREF                     |            | 0x9800          |
| Comparator                |            | 0xA000          |
| CTMU                      |            | 0xA200          |
| Oscillator                |            | 0xF000          |
| Device and Revision ID    |            | 0xF220          |
| Peripheral Module Disable |            | 0xF240          |
| Flash Controller          |            | 0xF400          |
| Reset                     |            | 0xF600          |
| PPS                       |            | 0xFA04          |
| Interrupts                |            | 0x1000          |
| Bus Matrix                |            | 0x2000          |
| DMA                       | 0xBF88     | 0x3000          |
| USB                       |            | 0x5050          |
| PORTA-PORTC               |            | 0x6000          |
| Configuration             | 0xBFC0     | 0x0BF0          |

## TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

| (1)                                 | IRQ | Vector |              | Interru       | pt Bit Location |              | Persistent |
|-------------------------------------|-----|--------|--------------|---------------|-----------------|--------------|------------|
| Interrupt Source <sup>(1)</sup>     | #   | #      | Flag         | Enable        | Priority        | Sub-priority | Interrupt  |
|                                     |     | Highes | st Natural O | rder Priority | ,               |              |            |
| CT – Core Timer Interrupt           | 0   | 0      | IFS0<0>      | IEC0<0>       | IPC0<4:2>       | IPC0<1:0>    | No         |
| CS0 – Core Software Interrupt 0     | 1   | 1      | IFS0<1>      | IEC0<1>       | IPC0<12:10>     | IPC0<9:8>    | No         |
| CS1 – Core Software Interrupt 1     | 2   | 2      | IFS0<2>      | IEC0<2>       | IPC0<20:18>     | IPC0<17:16>  | No         |
| INT0 – External Interrupt           | 3   | 3      | IFS0<3>      | IEC0<3>       | IPC0<28:26>     | IPC0<25:24>  | No         |
| T1 – Timer1                         | 4   | 4      | IFS0<4>      | IEC0<4>       | IPC1<4:2>       | IPC1<1:0>    | No         |
| IC1E – Input Capture 1 Error        | 5   | 5      | IFS0<5>      | IEC0<5>       | IPC1<12:10>     | IPC1<9:8>    | Yes        |
| IC1 – Input Capture 1               | 6   | 5      | IFS0<6>      | IEC0<6>       | IPC1<12:10>     | IPC1<9:8>    | Yes        |
| OC1 – Output Compare 1              | 7   | 6      | IFS0<7>      | IEC0<7>       | IPC1<20:18>     | IPC1<17:16>  | No         |
| INT1 – External Interrupt 1         | 8   | 7      | IFS0<8>      | IEC0<8>       | IPC1<28:26>     | IPC1<25:24>  | No         |
| T2 – Timer2                         | 9   | 8      | IFS0<9>      | IEC0<9>       | IPC2<4:2>       | IPC2<1:0>    | No         |
| IC2E – Input Capture 2              | 10  | 9      | IFS0<10>     | IEC0<10>      | IPC2<12:10>     | IPC2<9:8>    | Yes        |
| IC2 – Input Capture 2               | 11  | 9      | IFS0<11>     | IEC0<11>      | IPC2<12:10>     | IPC2<9:8>    | Yes        |
| OC2 – Output Compare 2              | 12  | 10     | IFS0<12>     | IEC0<12>      | IPC2<20:18>     | IPC2<17:16>  | No         |
| INT2 – External Interrupt 2         | 13  | 11     | IFS0<13>     | IEC0<13>      | IPC2<28:26>     | IPC2<25:24>  | No         |
| T3 – Timer3                         | 14  | 12     | IFS0<14>     | IEC0<14>      | IPC3<4:2>       | IPC3<1:0>    | No         |
| IC3E – Input Capture 3              | 15  | 13     | IFS0<15>     | IEC0<15>      | IPC3<12:10>     | IPC3<9:8>    | Yes        |
| IC3 – Input Capture 3               | 16  | 13     | IFS0<16>     | IEC0<16>      | IPC3<12:10>     | IPC3<9:8>    | Yes        |
| OC3 – Output Compare 3              | 17  | 14     | IFS0<17>     | IEC0<17>      | IPC3<20:18>     | IPC3<17:16>  | No         |
| INT3 – External Interrupt 3         | 18  | 15     | IFS0<18>     | IEC0<18>      | IPC3<28:26>     | IPC3<25:24>  | No         |
| T4 – Timer4                         | 19  | 16     | IFS0<19>     | IEC0<19>      | IPC4<4:2>       | IPC4<1:0>    | No         |
| IC4E – Input Capture 4 Error        | 20  | 17     | IFS0<20>     | IEC0<20>      | IPC4<12:10>     | IPC4<9:8>    | Yes        |
| IC4 – Input Capture 4               | 21  | 17     | IFS0<21>     | IEC0<21>      | IPC4<12:10>     | IPC4<9:8>    | Yes        |
| OC4 – Output Compare 4              | 22  | 18     | IFS0<22>     | IEC0<22>      | IPC4<20:18>     | IPC4<17:16>  | No         |
| INT4 – External Interrupt 4         | 23  | 19     | IFS0<23>     | IEC0<23>      | IPC4<28:26>     | IPC4<25:24>  | No         |
| T5 – Timer5                         | 24  | 20     | IFS0<24>     | IEC0<24>      | IPC5<4:2>       | IPC5<1:0>    | No         |
| IC5E – Input Capture 5 Error        | 25  | 21     | IFS0<25>     | IEC0<25>      | IPC5<12:10>     | IPC5<9:8>    | Yes        |
| IC5 – Input Capture 5               | 26  | 21     | IFS0<26>     | IEC0<26>      | IPC5<12:10>     | IPC5<9:8>    | Yes        |
| OC5 – Output Compare 5              | 27  | 22     | IFS0<27>     | IEC0<27>      | IPC5<20:18>     | IPC5<17:16>  | No         |
| AD1 – ADC1 Convert done             | 28  | 23     | IFS0<28>     | IEC0<28>      | IPC5<28:26>     | IPC5<25:24>  | Yes        |
| FSCM – Fail-Safe Clock Monitor      | 29  | 24     | IFS0<29>     | IEC0<29>      | IPC6<4:2>       | IPC6<1:0>    | No         |
| RTCC – Real-Time Clock and Calendar | 30  | 25     | IFS0<30>     | IEC0<30>      | IPC6<12:10>     | IPC6<9:8>    | No         |
| FCE – Flash Control Event           | 31  | 26     | IFS0<31>     | IEC0<31>      | IPC6<20:18>     | IPC6<17:16>  | No         |
| CMP1 – Comparator Interrupt         | 32  | 27     | IFS1<0>      | IEC1<0>       | IPC6<28:26>     | IPC6<25:24>  | No         |
| CMP2 – Comparator Interrupt         | 33  | 28     | IFS1<1>      | IEC1<1>       | IPC7<4:2>       | IPC7<1:0>    | No         |
| CMP3 – Comparator Interrupt         | 34  | 29     | IFS1<2>      | IEC1<2>       | IPC7<12:10>     | IPC7<9:8>    | No         |
| USB – USB Interrupts                | 35  | 30     | IFS1<3>      | IEC1<3>       | IPC7<20:18>     | IPC7<17:16>  | Yes        |
| SPI1E – SPI1 Fault                  | 36  | 31     | IFS1<4>      | IEC1<4>       | IPC7<28:26>     | IPC7<25:24>  | Yes        |
| SPI1RX – SPI1 Receive Done          | 37  | 31     | IFS1<5>      | IEC1<5>       | IPC7<28:26>     | IPC7<25:24>  | Yes        |
| SPI1TX – SPI1 Transfer Done         | 38  | 31     | IFS1<6>      | IEC1<6>       | IPC7<28:26>     | IPC7<25:24>  | Yes        |

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

## TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

| ess                       |                                 |               |                 |             |       |       |        |       |      | В      | its     |        |        |        |         |        |        |        |            |
|---------------------------|---------------------------------|---------------|-----------------|-------------|-------|-------|--------|-------|------|--------|---------|--------|--------|--------|---------|--------|--------|--------|------------|
| Virtual Addre<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range     | 31/15           | 30/14       | 29/13 | 28/12 | 27/11  | 26/10 | 25/9 | 24/8   | 23/7    | 22/6   | 21/5   | 20/4   | 19/3    | 18/2   | 17/1   | 16/0   | All Resets |
| 2000                      |                                 | 31:16         | _               | —           | _     | -     | —      | —     | _    | _      | _       | —      | —      | —      | —       | —      | _      | —      | 0000       |
| 3280                      | DCH2CPTR                        | 15:0          |                 |             |       |       |        |       |      | CHCPT  | R<15:0> |        |        |        |         |        |        |        | 0000       |
|                           | DOUISDAT                        | 31:16         | _               | _           | _     | _     | _      | _     |      | _      | _       |        | _      | _      | _       | _      | _      |        | 0000       |
| 3290                      | DCH2DAT                         | 15:0          |                 |             | _     | _     |        |       |      | _      |         | •      | •      | CHPDA  | T<7:0>  | •      | •      |        | 0000       |
|                           | DOLIDOON                        | 31:16         | _               | _           | _     | _     | _      | _     | _    | _      | _       | _      | _      | _      | _       | _      | _      | _      | 0000       |
| 32A0                      | DCH3CON                         | 15:0          | CHBUSY          | _           | _     | _     | —      | —     | —    | CHCHNS | CHEN    | CHAED  | CHCHN  | CHAEN  | —       | CHEDET | CHPR   | l<1:0> | 0000       |
| 3280                      |                                 | 31:16         | —               |             | —     | —     |        |       |      | —      |         |        |        | CHAIR  | Q<7:0>  |        |        |        | 00FF       |
| 5260                      | DCHIJECON                       | 15:0          |                 |             |       | CHSIR | Q<7:0> | -     |      |        | CFORCE  | CABORT | PATEN  | SIRQEN | AIRQEN  | —      | —      | —      | FF00       |
| 3200                      | DCH3INT                         | 31:16         | —               |             | —     | —     |        |       | —    |        | CHSDIE  | CHSHIE | CHDDIE | CHDHIE | CHBCIE  | CHCCIE | CHTAIE | CHERIE | 0000       |
| 0200                      | DOMONI                          | 15:0          | —               | —           | —     | —     | —      | —     |      | —      | CHSDIF  | CHSHIF | CHDDIF | CHDHIF | CHBCIF  | CHCCIF | CHTAIF | CHERIF | 0000       |
| 32D0                      | DCH3SSA                         | 31:16         |                 | CHSSA<31:0> |       |       |        |       |      |        |         |        |        |        |         |        |        |        | 0000       |
|                           |                                 | 15:0          |                 |             |       |       |        |       |      |        |         |        |        |        |         |        |        |        | 0000       |
| 32E0                      | DCH3DSA                         | 31:16<br>15:0 |                 |             |       |       |        |       |      | CHDSA  | A<31:0> |        |        |        |         |        |        |        | 0000       |
|                           |                                 | 31:16         | _               | _           | _     | _     | —      | _     | _    | _      | _       | _      | —      | _      | _       | —      | _      | _      | 0000       |
| 32F0                      | DCH3SSIZ                        | 15:0          | CHSSIZ<15:0> 00 |             |       |       |        |       |      |        |         |        |        |        | 0000    |        |        |        |            |
| 2200                      |                                 | 31:16         | _               | _           | —     | —     | _      | _     | _    | _      | _       | _      | _      | _      | _       | _      | _      |        | 0000       |
| 3300                      | DCH3DSIZ                        | 15:0          |                 |             |       |       |        |       |      | CHDSI  | Z<15:0> |        |        |        |         |        |        |        | 0000       |
| 3310                      | оснаертр                        | 31:16         | —               | —           | —     | —     | —      | —     | —    | —      | —       | —      | —      | —      | —       | —      | —      | _      | 0000       |
| 5510                      | Densor IIX                      | 15:0          |                 |             |       |       |        |       |      | CHSPT  | R<15:0> |        |        |        |         |        |        |        | 0000       |
| 3320                      | DCH3DPTR                        | 31:16         | —               | —           | —     | —     | —      | —     |      | —      | —       | —      | —      | —      | —       | —      | —      | —      | 0000       |
| 0020                      | BOHODI III                      | 15:0          |                 |             |       |       |        |       |      | CHDPT  | R<15:0> |        |        |        |         |        |        |        | 0000       |
| 3330                      | DCH3CSIZ                        | 31:16         | —               |             | —     | —     | —      | —     |      | —      | —       | —      | —      | —      | —       | —      | —      | —      | 0000       |
|                           |                                 | 15:0          |                 |             |       |       |        |       |      | CHCSI  | Z<15:0> |        |        |        |         |        |        |        | 0000       |
| 3340                      | DCH3CPTR                        | 31:16         | —               | _           | —     | —     | _      | _     | —    | -      |         | —      | _      | _      |         | —      | _      |        | 0000       |
|                           |                                 | 15:0          |                 |             |       |       |        |       |      | CHCPT  | K<15:0> |        |        |        |         |        |        |        | 0000       |
| 3350                      | DCH3DAT                         | 31:16         | _               |             | _     | _     | _      | _     |      | _      | _       | _      | _      |        |         | —      | _      |        | 0000       |
|                           | DONODIN                         | 15.0          | _               | _           | _     | _     |        |       | _    | _      |         |        |        | CHPDA  | 11-1.02 |        |        |        | 0000       |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 22:16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |
| 15.0         | R/W-0             | U-0               | R/W-0             | R/W-0             | R-0               | U-0               | U-0              | U-0              |
| 15.6         | ON <sup>(1)</sup> | —                 | SIDL              | TWDIS             | TWIP              | —                 | —                | —                |
| 7:0          | R/W-0             | U-0               | R/W-0             | R/W-0             | U-0               | R/W-0             | R/W-0            | U-0              |
| 7.0          | TGATE             |                   | TCKP              | S<1:0>            |                   | TSYNC             | TCS              | _                |

## REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit<sup>(1)</sup>
  - 1 = Timer is enabled
  - 0 = Timer is disabled

### bit 14 Unimplemented: Read as '0'

### bit 13 **SIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

## bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to Timer1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

#### bit 11 **TWIP:** Asynchronous Timer Write in Progress bit

#### In Asynchronous Timer mode:

- 1 = Asynchronous write to the Timer1 register in progress
- 0 = Asynchronous write to Timer1 register is complete
- In Synchronous Timer mode:

This bit is read as '0'.

- bit 10-8 **Unimplemented:** Read as '0'
- bit 7 TGATE: Timer Gated Time Accumulation Enable bit
  - When TCS = 1:

This bit is ignored.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

## bit 6 Unimplemented: Read as '0'

#### bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits

- 11 = 1:256 prescale value
- 10 = 1:64 prescale value
- 01 = 1:8 prescale value
- 00 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

## PIC32MX1XX/2XX 28/36/44-PIN FAMILY

## REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2

| Bit<br>Range | Bit<br>31/23/15/7    | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3        | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0        |
|--------------|----------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|------------------|-------------------------|
| 21.24        | U-0                  | U-0               | U-0               | U-0               | U-0                      | U-0               | U-0              | U-0                     |
| 31:24        | —                    | —                 | —                 | —                 | —                        | —                 | -                | —                       |
| 22.16        | U-0                  | U-0               | U-0               | U-0               | U-0                      | U-0               | U-0              | U-0                     |
| 23.10        | —                    | —                 | —                 | —                 | —                        | —                 | _                | —                       |
| 15.0         | R/W-0 U-0            |                   | U-0               | R/W-0             | R/W-0                    | R/W-0             | R/W-0            | R/W-0                   |
| 10.0         | SPISGNEXT            | —                 | —                 | FRMERREN          | SPIROVEN                 | SPITUREN          | IGNROV           | IGNTUR                  |
| 7:0          | R/W-0                | U-0               | U-0               | U-0               | R/W-0                    | U-0               | R/W-0            | R/W-0                   |
| 7:0          | AUDEN <sup>(1)</sup> | _                 | _                 | —                 | AUDMONO <sup>(1,2)</sup> | —                 | AUDMOD           | )<1:0> <sup>(1,2)</sup> |

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |  |

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
  - 1 = Data from RX FIFO is sign extended
  - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 **FRMERREN:** Enable Interrupt Events via FRMERR bit
  - 1 = Frame Error overflow generates error events
  - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
  - 1 = Receive overflow generates error events
    - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
  - 1 = Transmit underrun generates error events
  - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
  - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
     0 = A ROV is a critical error that stops SPI operation
- bit 8 **IGNTUR:** Ignore Transmit Underrun bit (for Audio Data Transmissions)
  - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
  - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit<sup>(1)</sup>
- 1 = Audio protocol enabled
  - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'
- bit 3 AUDMONO: Transmit Audio Data Format bit<sup>(1,2)</sup>
  - 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
  - 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'
- bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit<sup>(1,2)</sup>
  - 11 = PCM/DSP mode
  - 10 = Right-Justified mode
  - 01 = Left-Justified mode
  - $00 = I^2S \mod$
- **Note 1:** This bit can only be written when the ON bit = 0.
  - 2: This bit is only valid for AUDEN = 1.

## 18.0 INTER-INTEGRATED CIRCUIT (I<sup>2</sup>C)

| Note: | This data sheet summarizes the features              |
|-------|------------------------------------------------------|
|       | of the PIC32MX1XX/2XX 28/36/44-pin                   |
|       | Family of devices. It is not intended to be          |
|       | a comprehensive reference source. To                 |
|       | complement the information in this data              |
|       | sheet, refer to Section 24. "Inter-                  |
|       | Integrated Circuit (I <sup>2</sup> C)" (DS60001116), |
|       | which is available from the Documentation            |
|       | > Reference Manual section of the Micro-             |
|       | chip PIC32 web site                                  |
|       | (www.microchip.com/pic32).                           |

The  $I^2C$  module provides complete hardware support for both Slave and Multi-Master modes of the  $I^2C$  serial communication standard. Figure 18-1 illustrates the  $I^2C$  module block diagram.

Each  $I^2C$  module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I<sup>2</sup>C module offers the following key features:

- I<sup>2</sup>C interface supporting both master and slave operation
- I<sup>2</sup>C Slave mode supports 7-bit and 10-bit addressing
- I<sup>2</sup>C Master mode supports 7-bit and 10-bit addressing
- I<sup>2</sup>C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I<sup>2</sup>C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I<sup>2</sup>C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

## PIC32MX1XX/2XX 28/36/44-PIN FAMILY

## REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 4 Unimplemented: Read as '0' CS1P: Chip Select 0 Polarity bit<sup>(2)</sup> bit 3 1 = Active-high (PMCS1)  $0 = \text{Active-low}(\overline{PMCS1})$ bit 2 Unimplemented: Read as '0' bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR) For Master mode 1 (MODE<1:0> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Read Strobe active-high (PMRD)  $0 = \text{Read Strobe active-low}(\overline{PMRD})$ For Master mode 1 (MODE<1:0> = 11): 1 = Read/write strobe active-high (PMRD/PMWR)
  - 0 = Read/write strobe active-low (PMRD/PMWR)
  - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
    - 2: These bits have no effect when their corresponding pins are used as address lines.

## 21.1 RTCC Control Registers

## TABLE 21-1: RTCC REGISTER MAP

| ess                      |                                 |           |        |       |          |          |             |                   |            |      | Bits       |          |           |         |               |            |           |       |            |
|--------------------------|---------------------------------|-----------|--------|-------|----------|----------|-------------|-------------------|------------|------|------------|----------|-----------|---------|---------------|------------|-----------|-------|------------|
| Virtual Addr<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15  | 30/14 | 29/13    | 28/12    | 27/11       | 26/10             | 25/9       | 24/8 | 23/7       | 22/6     | 21/5      | 20/4    | 19/3          | 18/2       | 17/1      | 16/0  | All Resets |
| 0200                     | RTCCON                          | 31:16     | —      |       | —        | —        |             | —                 | - CAL<9:0> |      |            |          |           |         | 0             |            |           |       |            |
| 0200                     | in ocon                         | 15:0      | ON     | _     | SIDL     |          | _           | —                 | _          | _    | RTSECSEL   | RTCCLKON | _         | _       | RTCWREN       | RTCSYNC    | HALFSEC   | RTCOE | 0000       |
| 0210                     |                                 | 31:16     | —      | _     | —        | —        | -           | _                 | —          | -    | —          | —        | _         | —       | —             | —          | —         | —     | 0000       |
|                          | RICALRIN                        | 15:0      | ALRMEN | CHIME | PIV      | ALRMSYNC |             | AMASK<3:0>        |            |      |            |          |           | ARPT    | <7:0>         |            |           |       | 0000       |
| 0220                     | DTOTIME                         | 31:16     | —      |       | HR1      | 0<1:0>   | HR01<3:0>   |                   |            | —    | MIN10<2:0> |          |           |         | MIN01         | <3:0>      |           | xxxx  |            |
| 0220                     | RICHIVIL                        | 15:0      | —      |       | SEC10<2: | 0>       | SEC01<3:0>  |                   |            | —    | —          |          | —         | -       | —             | Ι          | —         | xx00  |            |
| 0000                     |                                 | 31:16     |        | YEAR  | 10<3:0>  |          | YEAR01<3:0> |                   |            | —    | _          |          | MONTH10   |         | MONTH         | )1<3:0>    |           | xxxx  |            |
| 0230                     | RICDAIE                         | 15:0      | _      | _     | DAY      | 10<1:0>  |             | DAY0              | 1<3:0>     |      | —          | —        | _         | _       | — WDAY01<2:0> |            | >         | xx00  |            |
| 0040                     |                                 | 31:16     | _      | -     | HR1      | 0<1:0>   |             | HR01              | <3:0>      |      | —          | М        | IN10<2:0> |         |               | MIN01<3:0> |           |       | xxxx       |
| 0240                     | ALRIVITIME                      | 15:0      | _      |       | SEC10<2: | 0>       |             | SEC0 <sup>-</sup> | 1<3:0>     |      | —          | -        | —         | _       | —             | _          | _         | _     | xx00       |
| 0250                     |                                 | 31:16     | _      | _     | —        | —        | _           | _                 | _          | _    | _          | -        | _         | MONTH10 |               | MONTH      | )1<3:0>   |       | 00xx       |
|                          | ALKIVIDATE                      | 15:0      |        | DAY   | 10<3:0>  | *        |             | DAY0 <sup>2</sup> | 1<3:0>     |      | —          | —        | _         | _       | —             | W          | DAY01<2:0 | >     | xx0x       |

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

| Bit<br>Range | Bit<br>31/23/15/7       | Bit<br>30/22/14/6    | Bit<br>29/21/13/5  | Bit<br>28/20/12/4       | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------------|----------------------|--------------------|-------------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0                     | U-0                  | U-0                | U-0                     | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                       | _                    | —                  | —                       | —                 | _                 | —                | —                |
| 22:16        | U-0                     | U-0                  | U-0                | U-0                     | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                       | —                    | —                  | —                       | —                 | —                 | —                | —                |
| 15:8         | R/W-0                   | R/W-0                | R/W-0              | R-0                     | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
|              | ALRMEN <sup>(1,2)</sup> | CHIME <sup>(2)</sup> | PIV <sup>(2)</sup> | ALRMSYNC <sup>(3)</sup> |                   | AMASK             | <3:0> <b>(2)</b> |                  |
| 7:0          | R/W-0                   | R/W-0                | R/W-0              | R/W-0                   | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
|              | ARPT<7:0>(2)            |                      |                    |                         |                   |                   |                  |                  |

## REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER

## Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
|-------------------|------------------|------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

### bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit<sup>(1,2)</sup>
  - 1 = Alarm is enabled
  - 0 = Alarm is disabled

## bit 14 CHIME: Chime Enable bit<sup>(2)</sup>

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

### bit 13 **PIV:** Alarm Pulse Initial Value bit<sup>(2)</sup>

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

## bit 12 ALRMSYNC: Alarm Sync bit<sup>(3)</sup>

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

#### bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits<sup>(2)</sup>

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved; do not use
- 1011 = Reserved; do not use
- 11xx = Reserved; do not use
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
  - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
  - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

## REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)

- 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
  - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 **ASAM:** ADC Sample Auto-Start bit

1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.

- 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADC Sample Enable bit<sup>(2)</sup>

1 = The ADC sample and hold amplifier is sampling

0 = The ADC sample/hold amplifier is holding

When ASAM = 0, writing '1' to this bit starts sampling.

When SSRC = 000, writing '0' to this bit will end sampling and start conversion.

- bit 0 DONE: Analog-to-Digital Conversion Status bit<sup>(3)</sup>
   1 = Analog-to-digital conversion is done
   0 = Analog-to-digital conversion is not done or has not started Clearing this bit will not affect any operation in progress.
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
  - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion.
  - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | R/W-0             | U-0               | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
|              | CH0NB             | —                 | —                 | —                 |                   | CH0SB             | <3:0>            |                  |
| 00.40        | R/W-0             | U-0               | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23:10        | CH0NA             | —                 | —                 | —                 | CH0SA<3:0>        |                   |                  |                  |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | —                 | —                 | —                 | _                 | —                 | —                | —                |
| 7.0          | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 7.0          |                   |                   |                   |                   |                   | _                 |                  | _                |

## REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER

CHONB: Negative Input Select bit for Sample B

## Legend:

bit 31

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

|        |                      | <ul> <li>1 = Channel 0 negative input is AN1</li> <li>0 = Channel 0 negative input is VREFL</li> </ul>                                                                                                                                                                                                                                           |
|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 30 | -28                  | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                       |
| bit 27 | -24                  | CH0SB<3:0>: Positive Input Select bits for Sample B                                                                                                                                                                                                                                                                                              |
|        |                      | 1111 = Channel 0 positive input is Open <sup>(1)</sup><br>1110 = Channel 0 positive input is IVREF <sup>(2)</sup><br>1101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) <sup>(3)</sup><br>1100 = Channel 0 positive input is AN12 <sup>(4)</sup>                                                                                 |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | 0001 = Channel 0 positive input is AN1<br>0000 = Channel 0 positive input is AN0                                                                                                                                                                                                                                                                 |
| bit 23 |                      | CH0NA: Negative Input Select bit for Sample A Multiplexer Setting <sup>(2)</sup>                                                                                                                                                                                                                                                                 |
|        |                      | <ul><li>1 = Channel 0 negative input is AN1</li><li>0 = Channel 0 negative input is VREFL</li></ul>                                                                                                                                                                                                                                              |
| bit 22 | -20                  | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                       |
| bit 19 | -16                  | CH0SA<3:0>: Positive Input Select bits for Sample A Multiplexer Setting<br>1111 = Channel 0 positive input is Open <sup>(1)</sup><br>1110 = Channel 0 positive input is IVREF <sup>(2)</sup><br>1101 = Channel 0 positive input is CTMU temperature (CTMUT) <sup>(3)</sup><br>1100 = Channel 0 positive input is AN12 <sup>(4)</sup>             |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | •                                                                                                                                                                                                                                                                                                                                                |
|        |                      | 0001 = Channel 0 positive input is AN1<br>0000 = Channel 0 positive input is AN0                                                                                                                                                                                                                                                                 |
| bit 15 | -0                   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                       |
| Note   | 1:<br>2:<br>3:<br>4: | This selection is only used with CTMU capacitive and time measurement.<br>See <b>Section 24.0 "Comparator Voltage Reference (CVREF)"</b> for more information.<br>See <b>Section 25.0 "Charge Time Measurement Unit (CTMU)</b> " for more information.<br>AN12 is only available on 44-pin devices. AN6-AN8 are not available on 28-pin devices. |
|        |                      |                                                                                                                                                                                                                                                                                                                                                  |

## REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 18-10 **PWP<8:0>:** Program Flash Write-Protect bits<sup>(3)</sup>

|               | Prevents selected program Flash memory pages from being modified during code execution.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 11111111 = Disabled<br>11111111 = Memory below 0x0400 address is write-protected<br>11111110 = Memory below 0x0800 address is write-protected<br>11111100 = Memory below 0x0C00 address is write-protected<br>111111011 = Memory below 0x1000 (4K) address is write-protected<br>111111010 = Memory below 0x1400 address is write-protected<br>111111001 = Memory below 0x1800 address is write-protected<br>111111000 = Memory below 0x1C00 address is write-protected<br>111111011 = Memory below 0x2000 (8K) address is write-protected |
|               | 111110110 = Memory below 0x2400 address is write-protected<br>111110101 = Memory below 0x2800 address is write-protected<br>111110100 = Memory below 0x2C00 address is write-protected<br>111110011 = Memory below 0x3000 address is write-protected                                                                                                                                                                                                                                                                                       |
|               | 111110010 = Memory below 0x3400 address is write-protected<br>111110001 = Memory below 0x3800 address is write-protected<br>11110000 = Memory below 0x3C00 address is write-protected<br>111101111 = Memory below 0x4000 (16K) address is write-protected                                                                                                                                                                                                                                                                                  |
|               | 110111111 = Memory below 0x10000 (64K) address is write-protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | :<br>101111111 = Memory below 0x20000 (128K) address is write-protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | •<br>011111111 = Memory below 0x40000 (256K) address is write-protected<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | •<br>000000000 = All possible memory is write-protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| bit 9-5       | Reserved: Write '1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bit 4-3       | ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits <sup>(2)</sup><br>11 = PGEC1/PGED1 pair is used<br>10 = PGEC2/PGED2 pair is used<br>01 = PGEC3/PGED3 pair is used<br>00 = PGEC4/PGED4 pair is used <sup>(2)</sup>                                                                                                                                                                                                                                                                                              |
| bit 2         | JTAGEN: JTAG Enable bit <sup>(1)</sup><br>1 = JTAG is enabled<br>0 = JTAG is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bit 1-0       | <b>DEBUG&lt;1:0&gt;:</b> Background Debugger Enable bits (forced to '11' if code-protect is enabled)<br>1x = Debugger is disabled<br>0x = Debugger is enabled                                                                                                                                                                                                                                                                                                                                                                              |
| Note 1:<br>2: | This bit sets the value for the JTAGEN bit in the CFGCON register.<br>The PGEC4/PGED4 pin pair is not available on all devices. Refer to the " <b>Pin Diagrams</b> " section for availability.                                                                                                                                                                                                                                                                                                                                             |

3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

## 27.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX 28/36/44-pin Family devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX 28/36/44-pin Family family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 30.1 "DC Characteristics"**.

| Note: | It is important that the low-ESR capacitor |
|-------|--------------------------------------------|
|       | is placed as close as possible to the VCAP |
|       | pin.                                       |

## 27.3.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

## 27.3.2 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX 28/36/44-pin Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 30.1 "DC Characteristics"**.

## FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR



## 27.4 **Programming and Diagnostics**

PIC32MX1XX/2XX 28/36/44-pin Family devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

Figure 27-2 illustrates a block diagram of the programming, debugging, and trace ports.











| AC CHARA                          | S <sup>(2)</sup> | $eq:standard operating Conditions (see Note 3): 2.5V to 3.6V (unless otherwise stated) \\ Operating temperature                                    $ |         |                 |                            |
|-----------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|----------------------------|
| ADC Speed                         | TAD Min.         | Sampling<br>Time Min.                                                                                                                                | Rs Max. | Vdd             | ADC Channels Configuration |
| 1 Msps to 400 ksps <sup>(1)</sup> | 65 ns            | 132 ns                                                                                                                                               | 500Ω    | 3.0V to<br>3.6V | ANX CHX ADC                |
| Up to 400 ksps                    | 200 ns           | 200 ns                                                                                                                                               | 5.0 κΩ  | 2.5V to<br>3.6V | ANX CHX<br>ANX OF VREF-    |

## TABLE 30-35:10-BIT CONVERSION RATE PARAMETERS

**Note 1:** External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

**3:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

NOTES:

## Revision G (April 2015)

This revision includes the addition of the following devices:

- PIC32MX130F256B
   PIC32MX230F256B
- PIC32MX130F256D PIC32MX230F256D

The title of the document was updated to avoid confusion with the PIC32MX1XX/2XX/5XX 64/100-pin Family data sheet.

## TABLE A-6: MAJOR SECTION UPDATES

All peripheral SFR maps have been relocated from the Memory chapter to their respective peripheral chapters.

In addition, this revision includes the following major changes as described in Table A-6, as well as minor updates to text and formatting, which were incorporated throughout the document.

| Section                                                                                                                           | Update Description                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32-bit Microcontrollers (up to 256<br>KB Flash and 64 KB SRAM) with<br>Audio and Graphics Interfaces,<br>USB, and Advanced Analog | Added new devices to the family features (see Table 1 and Table 2).<br>Updated pin diagrams to include new devices (see Pin Diagrams).                                                          |
| 2.0 "Guidelines for Getting<br>Started with 32-bit MCUs"                                                                          | Updated these sections: 2.2 "Decoupling Capacitors", 2.3 "Capacitor on<br>Internal Voltage Regulator (VCAP)", 2.4 "Master Clear (MCLR) Pin",<br>2.8.1 "Crystal Oscillator Design Consideration" |
| 4.0 "Memory Organization"                                                                                                         | Added Memory Map for new devices (see Figure 4-6).                                                                                                                                              |
| 14.0 "Watchdog Timer (WDT)"                                                                                                       | New chapter created from content previously located in the Special Features chapter.                                                                                                            |
| 30.0 "Electrical Characteristics"                                                                                                 | Removed parameter D312 (TSET) from the Comparator Specifications (see Table 30-12).                                                                                                             |
|                                                                                                                                   | Added the Comparator Voltage Reference Specifications (see Table 30-13).                                                                                                                        |
|                                                                                                                                   | Updated Table 30-12.                                                                                                                                                                            |

## **Revision H (July 2015)**

This revision includes the following major changes as described in Table A-7, as well as minor updates to text and formatting, which were incorporated throughout the document.

## TABLE A-7: MAJOR SECTION UPDATES

| Section                                                  | Update Description                                                                                    |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 2.0 "Guidelines for Getting<br>Started with 32-bit MCUs" | Section 2.9 "Sosc Design Recommendation" was removed.                                                 |
| 8.0 "Oscillator Configuration"                           | The Primary Oscillator (Posc) logic in the Oscillator diagram was updated (see Figure 8-1).           |
| 30.0 "Electrical Characteristics"                        | The Power-Down Current (IPD) DC Characteristics parameter DC40k was updated (see Table 30-7).         |
|                                                          | Table 30-9: "DC Characteristics: I/O Pin Input Injection current           Specifications" was added. |