Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | | | | Product Status | Active | | Core Processor | MIPS32® M4K™ | | Core Size | 32-Bit Single-Core | | Speed | 50MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | Peripherals | Brown-out Detect/Reset, DMA, I2S, POR, PWM, WDT | | Number of I/O | 19 | | Program Memory Size | 128KB (128K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 32K x 8 | | /oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | Data Converters | A/D 9x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f128b-50i-ss | TABLE 1: PIC32MX1XX 28/36/44-PIN GENERAL PURPOSE FAMILY FEATURES | | | | | Rem | appab | le Pe | riphe | rals | | | | | _ | | ls) | | | | | |-----------------|------|------------------------------------|------------------|-----------------|--|-------|----------------------|------------------------------------|--------------------|---------------------|------------------|-----|---------------------------------------|------|------------------------------|------|----------|------|---------------------------------| | Device | Pins | Program Memory (KB) ⁽¹⁾ | Data Memory (KB) | Remappable Pins | Timers ⁽²⁾ /Capture/Compare | UART | SPI/I ² S | External Interrupts ⁽³⁾ | Analog Comparators | USB On-The-Go (OTG) | l ² C | PMP | DMA Channels (Programmable/Dedicated) | СТМО | 10-bit 1 Msps ADC (Channels) | RTCC | I/O Pins | JTAG | Packages | | PIC32MX110F016B | 28 | 16+3 | 4 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | Ν | 2 | Υ | 4/0 | Υ | 10 | Υ | 21 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX110F016C | 36 | 16+3 | 4 | 24 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 12 | Υ | 25 | Υ | VTLA | | PIC32MX110F016D | 44 | 16+3 | 4 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 13 | Y | 35 | Υ | VTLA,
TQFP,
QFN | | PIC32MX120F032B | 28 | 32+3 | 8 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Y | 10 | Y | 21 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX120F032C | 36 | 32+3 | 8 | 24 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 12 | Υ | 25 | Υ | VTLA | | PIC32MX120F032D | 44 | 32+3 | 8 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | Ν | 2 | Υ | 4/0 | Υ | 13 | Υ | 35 | Υ | VTLA,
TQFP,
QFN | | PIC32MX130F064B | 28 | 64+3 | 16 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 10 | Υ | 21 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX130F064C | 36 | 64+3 | 16 | 24 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 12 | Υ | 25 | Υ | VTLA | | PIC32MX130F064D | 44 | 64+3 | 16 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Y | 13 | Y | 35 | Υ | VTLA,
TQFP,
QFN | | PIC32MX150F128B | 28 | 128+3 | 32 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 10 | Υ | 21 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX150F128C | 36 | 128+3 | 32 | 24 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 12 | Υ | 25 | Υ | VTLA | | PIC32MX150F128D | 44 | 128+3 | 32 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 13 | Υ | 35 | Υ | VTLA,
TQFP,
QFN | | PIC32MX130F256B | 28 | 256+3 | 16 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Y | 10 | Υ | 21 | Y | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX130F256D | 44 | 256+3 | 16 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 13 | Υ | 35 | Υ | VTLA,
TQFP,
QFN | | PIC32MX170F256B | 28 | 256+3 | 64 | 20 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Y | 10 | Υ | 21 | Υ | SOIC,
SSOP,
SPDIP,
QFN | | PIC32MX170F256D | 44 | 256+3 | 64 | 32 | 5/5/5 | 2 | 2 | 5 | 3 | N | 2 | Υ | 4/0 | Υ | 13 | Υ | 35 | Υ | VTLA,
TQFP,
QFN | Note 1: This device features 3 KB of boot Flash memory. **3:** Four out of five external interrupts are remappable. **^{2:}** Four out of five timers are remappable. ### TABLE 5: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES 28-PIN QFN (TOP VIEW)(1,2,3.4) PIC32MX110F016B PIC32MX120F032B PIC32MX130F064B PIC32MX130F256B PIC32MX150F128B PIC32MX170F256B 28 1 | Pin # | Full Pin Name | |-------|---------------------------------------| | 1 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0 | | 2 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1 | | 3 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 | | 4 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3 | | 5 | Vss | | 6 | OSC1/CLKI/RPA2/RA2 | | 7 | OSC2/CLKO/RPA3/PMA0/RA3 | | 8 | SOSCI/RPB4/RB4 | | 9 | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 | | 10 | VDD | | 11 | PGED3/RPB5/PMD7/RB5 | | 12 | PGEC3/RPB6/PMD6/RB6 | | 13 | TDI/RPB7/CTED3/PMD5/INT0/RB7 | | 14 | TCK/RPB8/SCL1/CTED10/PMD4/RB8 | | Pin# | Full Pin Name | |------|--| | 15 | TDO/RPB9/SDA1/CTED4/PMD3/RB9 | | 16 | Vss | | 17 | VCAP | | 18 | PGED2/RPB10/CTED11/PMD2/RB10 | | 19 | PGEC2/TMS/RPB11/PMD1/RB11 | | 20 | AN12/PMD0/RB12 | | 21 | AN11/RPB13/CTPLS/PMRD/RB13 | | 22 | CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14 | | 23 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 24 | AVss | | 25 | AVDD | | 26 | MCLR | | 27 | VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0 | | 28 | VREF-/CVREF-/AN1/RPA1/CTED2/RA1 | Note - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. - 3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: Shaded pins are 5V tolerant. ## TABLE 14: PIN NAMES FOR 44-PIN USB DEVICES 44-PIN VTLA (TOP VIEW)(1,2,3,5) PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D 44 | Pin # | Full Pin Name | |-------|--| | 1 | RPB9/SDA1/CTED4/PMD3/RB9 | | 2 | RPC6/PMA1/RC6 | | 3 | RPC7/PMA0/RC7 | | 4 | RPC8/PMA5/RC8 | | 5 | RPC9/CTED7/PMA6/RC9 | | 6 | Vss | | 7 | VCAP | | 8 | PGED2/RPB10/D+/CTED11/RB10 | | 9 | PGEC2/RPB11/D-/RB11 | | 10 | Vusb3v3 | | 11 | AN11/RPB13/CTPLS/PMRD/RB13 | | 12 | PGED4 ⁽⁴⁾ /TMS/PMA10/RA10 | | 13 | PGEC4 ⁽⁴⁾ /TCK/CTED8/PMA7/RA7 | | 14 | CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14 | | 15 | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 | | 16 | AVss | | 17 | AVDD | | 18 | MCLR | | 19 | PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 | | 20 | PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 | | 21 | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 | | 22 | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 | | Pin# | Full Pin Name | |------|---| | 23 | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 | | 24 | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 | | 25 | AN6/RPC0/RC0 | | 26 | AN7/RPC1/RC1 | | 27 | AN8/RPC2/PMA2/RC2 | | 28 | VDD | | 29 | Vss | | 30 | OSC1/CLKI/RPA2/RA2 | | 31 | OSC2/CLKO/RPA3/RA3 | | 32 | TDO/RPA8/PMA8/RA8 | | 33 | SOSCI/RPB4/RB4 | | 34 | SOSCO/RPA4/T1CK/CTED9/RA4 | | 35 | TDI/RPA9/PMA9/RA9 | | 36 | AN12/RPC3/RC3 | | 37 | RPC4/PMA4/RC4 | | 38 | RPC5/PMA3/RC5 | | 39 | Vss | | 40 | VDD | | 41 | RPB5/USBID/RB5 | | 42 | VBUS | | 43 | RPB7/CTED3/PMD5/INT0/RB7 | | 44 | RPB8/SCL1/CTED10/PMD4/RB8 | ## Note - 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and **Section 11.3 "Peripheral Pin Select"** for restrictions. - 2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. - 3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. - 4: This pin function is not available on PIC32MX210F016D and PIC32MX220F032D devices. - 5: Shaded pins are 5V tolerant. FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX110/210 DEVICES (4 KB RAM, 16 KB FLASH) ## REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | U-0 | 31:24 | _ | - | - | _ | - | | _ | _ | | 22.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | | 15:8 | BMXDKPBA<15:8> | | | | | | | | | 7.0 | R-0 | 7:0 | | · | | BMXDK | PBA<7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15-10 BMXDKPBA<15:10>: DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM bit 9-0 BMXDKPBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments **Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage. 2: The value in this register must be less than or equal to BMXDRMSZ. # 8.0 OSCILLATOR CONFIGURATION Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 6. "Oscillator Configuration"** (DS60001112), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features: - Four external and internal oscillator options as clock sources - On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources - On-Chip user-selectable divisor postscaler on select oscillator sources - Software-controllable switching between various clock sources - A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown - · Dedicated On-Chip PLL for USB peripheral A block diagram of the oscillator system is provided in Figure 8-1. ## REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | - | _ | _ | _ | _ | _ | _ | _ | | 22.46 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | U-0 | 15:8 | - | _ | _ | - | _ | _ | - | _ | | 7.0 | R/W-0 | 7:0 | | _ | | CHPDAT | Γ<7:0> | _ | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-0 CHPDAT<7:0>: Channel Data Register bits Pattern Terminate mode: Data to be matched must be stored in this register to allow a "terminate on match". All other modes: Unused. ## REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|----------------------|----------------------|-------------------|-------------------|------------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | - | _ | _ | _ | _ | _ | | 23:16 | U-0 | 23.10 | - | - | 1 | - | - | _ | - | _ | | 15:8 | U-0 | 15.6 | - | - | - | - | - | _ | | _ | | | R/WC-0, HS | 7:0 | BTSEF | BMXEF | DMAEF ⁽¹⁾ | BTOEF ⁽²⁾ | DFN8EF | CRC16EF | CRC5EF ⁽⁴⁾ | PIDEF | | | BISEF | DIVIALI | DIVIALITY | BIOEL | DENOLE | CKCTOLF | EOFEF ^(3,5) | FIDER | Legend:WC = Write '1' to clearHS = Hardware Settable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7 BTSEF: Bit Stuff Error Flag bit 1 = Packet rejected due to bit stuff error 0 = Packet accepted bit 6 BMXEF: Bus Matrix Error Flag bit 1 = The base address, of the Buffer Descriptor Table, or the address of an individual buffer pointed to by a Buffer Descriptor Table entry, is invalid. 0 = No address error bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected 0 = No DMA error bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾ 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out bit 3 **DFN8EF:** Data Field Size Error Flag bit 1 = Data field received is not an integral number of bytes 0 = Data field received is an integral number of bytes bit 2 CRC16EF: CRC16 Failure Flag bit 1 = Data packet rejected due to CRC16 error 0 = Data packet accepted - **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated. - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed. - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero. - 4: Device mode. - 5: Host mode. ## REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | - | _ | - | _ | _ | _ | - | _ | | 23:16 | U-0 | 23.10 | _ | _ | - | _ | _ | _ | _ | _ | | 15:8 | U-0 | 15.6 | _ | _ | _ | _ | _ | _ | _ | _ | | 7:0 | R/W-0 | 7.0 | LSPDEN | | | D | EVADDR<6:0 |)> | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7 LSPDEN: Low-Speed Enable Indicator bit 1 = Next token command to be executed at Low-Speed0 = Next token command to be executed at Full-Speed bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits ## REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 21:24 | U-0 | 31:24 | - | _ | _ | - | - | _ | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | U-0 | 15.6 | 1 | - | _ | - | - | _ | - | - | | 7:0 | R-0 | 7:0 | | | | FRML | <7:0> | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-8 Unimplemented: Read as '0' bit 7-0 FRML<7:0>: The 11-bit Frame Number Lower bits The register bits are updated with the current frame number whenever a SOF TOKEN is received. | ▢ | |---------------| | DS60001 | | O | | 0 | | 0 | | 0 | | _ | | \rightarrow | | 168J- | | ω | | <u>_</u> | | <u> </u> | | page | | Æ | | × | | ťν | | _ | | 135 | | č | | ٠. | | | | | | TABLE 11-5: | PORTC REGISTER MAP | | |-------------|--------------------|--| | IADLE II-J. | PURIC REGISTER WAR | | | ess | | | | | | | | | | | | Bits | | | | | | | 10 | |-----------------------------|-----------------------------------|-----------|-------|-------|-------|-------|-------|-------|----------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|----------------------|-------------------------|----------|----------|------------| | Virtual Address
(BF88_#) | Register
Name ^(1,2) | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | 6200 | ANSELC | 31:16 | ı | _ | _ | _ | _ | _ | I | 1 | _ | _ | _ | 1 | _ | _ | ı | ı | 0000 | | 0200 | ANSELC | 15:0 | - | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | ANSC3 ⁽⁴⁾ | ANSC2 ⁽³⁾ | ANSC1 | ANSC0 | 000F | | 6210 | TRISC | 31:16 | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | _ | 0000 | | 0210 | TRISC | 15:0 | I | _ | _ | _ | _ | | TRISC9 | TRISC8 ⁽³⁾ | TRISC7 ⁽³⁾ | TRISC6 ⁽³⁾ | TRISC5 ⁽³⁾ | TRISC4 ⁽³⁾ | TRISC3 | TRISC2 ⁽³⁾ | TRISC1 | TRISC0 | 03FF | | 6220 | PORTC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | | | | | | 0000 | | 0220 | PORIC | 15:0 | _ | _ | _ | _ | _ | _ | RC9 | RC8 ⁽³⁾ | RC7 ⁽³⁾ | RC6 ⁽³⁾ | RC5 ⁽³⁾ | RC4 ⁽³⁾ | RC3 | RC2 ⁽³⁾ | RC1 | RC0 | xxxx | | 6230 | LATC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0230 | LKI | 15:0 | I | _ | _ | _ | _ | _ | LATC9 | LATC8 ⁽³⁾ | LATC7 ⁽³⁾ | LATC6 ⁽³⁾ | LATC5 ⁽³⁾ | LATC4 ⁽³⁾ | LATC3 | LATC2 ⁽³⁾ | LATC1 | LATC0 | xxxx | | 6240 | ODCC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0240 | ODCC | 15:0 | _ | _ | _ | _ | _ | _ | ODCC9 | ODCC8 ⁽³⁾ | ODCC7 ⁽³⁾ | ODCC6 ⁽³⁾ | ODCC5 ⁽³⁾ | ODCC4 ⁽³⁾ | ODCC3 | ODCC2 ⁽³⁾ | ODCC1 | ODCC0 | 0000 | | 6250 | CNPUC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0250 | CNPUC | 15:0 | I | _ | _ | _ | _ | _ | CNPUC9 | CNPUC8 ⁽³⁾ | CNPUC7 ⁽³⁾ | CNPUC6 ⁽³⁾ | CNPUC5 ⁽³⁾ | CNPUC4 ⁽³⁾ | CNPUC3 | CNPUC2 ⁽³⁾ | CNPUC1 | CNPUC0 | 0000 | | 0000 | CNIDDO | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6260 | CNPDC | 15:0 | _ | _ | _ | _ | _ | _ | CNPDC9 | CNPDC8 ⁽³⁾ | CNPDC7 ⁽³⁾ | CNPDC6 ⁽³⁾ | CNPDC5 ⁽³⁾ | CNPDC4 ⁽³⁾ | CNPDC3 | CNPDC2 ⁽³⁾ | CNPDC1 | CNPDC0 | 0000 | | 6070 | CNICONIC | 31:16 | I | _ | _ | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 0270 | CNCONC | 15:0 | ON | _ | SIDL | _ | _ | _ | 1 | 1 | _ | _ | _ | 1 | _ | _ | - | - | 0000 | | 6200 | CNENC | 31:16 | I | _ | _ | _ | _ | _ | | | _ | _ | _ | | _ | _ | _ | | 0000 | | 6280 | CNENC | 15:0 | I | _ | _ | _ | _ | _ | CNIEC9 | CNIEC8 ⁽³⁾ | CNIEC7 ⁽³⁾ | CNIEC6(3) | CNIEC5 ⁽³⁾ | CNIEC4 ⁽³⁾ | CNIEC3 | CNIEC2 ⁽³⁾ | CNIEC1 | CNIEC0 | 0000 | | 6200 | CNICTATO | 31:16 | I | _ | _ | _ | _ | _ | | | _ | | _ | | _ | _ | _ | | 0000 | | 0290 | CNSTATC | 15:0 | | _ | _ | _ | _ | _ | CNSTATC9 | CNSTATC8(3) | CNSTATC7 ⁽³⁾ | CNSTATC6 ⁽³⁾ | CNSTATC5 ⁽³⁾ | CNSTATC4(3) | CNSTATC3 | CNSTATC2 ⁽³⁾ | CNSTATC1 | CNSTATCO | 0000 | ${f x}$ = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for PIC32MX1XX/2XX 28/36/44-PIN FAMILY - PORTC is not available on 28-pin devices. 2: - This bit is only available on 44-pin devices. - This bit is only available on USB-enabled devices with 36 or 44 pins. FIGURE 18-1: I²C BLOCK DIAGRAM ### REGISTER 19-1: UxMODE: UARTX MODE REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.24 | U-0 | 31:24 | 1 | _ | _ | - | _ | _ | _ | _ | | 00.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | 15:8 | ON ⁽¹⁾ | _ | SIDL | IREN | RTSMD | _ | UEN. | <1:0> | | 7.0 | R/W-0 | 7:0 | WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSEL | <1:0> | STSEL | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-16 Unimplemented: Read as '0' bit 15 ON: UARTx Enable bit(1) - 1 = UARTx is enabled. UARTx pins are controlled by UARTx as defined by the UEN<1:0> and UTXEN control bits. - 0 = UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal. - bit 14 Unimplemented: Read as '0' - bit 13 SIDL: Stop in Idle Mode bit - 1 = Discontinue module operation when the device enters Idle mode - 0 = Continue module operation when the device enters Idle mode - bit 12 IREN: IrDA Encoder and Decoder Enable bit - 1 = IrDA is enabled - 0 = IrDA is disabled - bit 11 RTSMD: Mode Selection for UxRTS Pin bit - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode - bit 10 Unimplemented: Read as '0' - bit 9-8 **UEN<1:0>:** UARTx Enable bits - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register - 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used - 01 = UxTX, UxRX and $\overline{\text{UxRTS}}$ pins are enabled and used; $\overline{\text{UxCTS}}$ pin is controlled by corresponding bits in the PORTx register - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register - bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit - 1 = Wake-up enabled - 0 = Wake-up disabled - bit 6 LPBACK: UARTx Loopback Mode Select bit - 1 = Loopback mode is enabled - 0 = Loopback mode is disabled - **Note 1:** When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. ## REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED) - bit 5-4 **Unimplemented:** Read as '0' - bit 3 RTCWREN: RTC Value Registers Write Enable bit (4) - 1 = RTC Value registers can be written to by the user - 0 = RTC Value registers are locked out from being written to by the user - bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read If the register is read twice and results in the same data, the data can be assumed to be valid - 0 = RTC Value registers can be read without concern about a rollover ripple - bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾ - 1 = Second half period of a second - 0 = First half period of a second - bit 0 RTCOE: RTCC Output Enable bit - 1 = RTCC clock output enabled clock presented onto an I/O - 0 = RTCC clock output disabled - **Note 1:** The ON bit is only writable when RTCWREN = 1. - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. - **4:** The RTCWREN bit can be set only when the write sequence is enabled. - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>). **Note:** This register is reset only on a Power-on Reset (POR). ## 23.0 COMPARATOR Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section to "Comparator" (DS60001110), which is available from the Documentation Reference Manual section the Microchip PIC32 web site (www.microchip.com/pic32). The Analog Comparator module contains three comparators that can be configured in a variety of ways. Following are some of the key features of this module: - · Selectable inputs available include: - Analog inputs multiplexed with I/O pins - On-chip internal absolute voltage reference (IVREF) - Comparator voltage reference (CVREF) - · Outputs can be Inverted - · Selectable interrupt generation A block diagram of the comparator module is provided in Figure 23-1. FIGURE 23-1: COMPARATOR BLOCK DIAGRAM ## TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) | | Standard Operating Conditions: 2.3V to 3.6V | | |--------------------|--|----| | AC CHARACTERISTICS | (unless otherwise stated) | | | | Operating temperature -40°C ≤ TA ≤ +85°C for Industria | al | | | -40°C ≤ TA ≤ +105°C for V-temp |) | | | _ | T- | | | $C \le IA \le +105^{\circ}C$ for V-temp | | | |---------------|-----------------|----------------------------|------------------------|-------------|---|-------|--| | Param.
No. | Symbol Characte | | eristics | Min. | Max. | Units | Conditions | | IS10 | TLO:SCL | Clock Low Time | 100 kHz mode | 4.7 | _ | μS | PBCLK must operate at a minimum of 800 kHz | | | | | 400 kHz mode | 1.3 | _ | μS | PBCLK must operate at a minimum of 3.2 MHz | | | | | 1 MHz mode (Note 1) | 0.5 | | μS | _ | | IS11 | THI:SCL | Clock High Time | 100 kHz mode | 4.0 | _ | μS | PBCLK must operate at a minimum of 800 kHz | | | | | 400 kHz mode | 0.6 | _ | μS | PBCLK must operate at a minimum of 3.2 MHz | | | | | 1 MHz mode (Note 1) | 0.5 | _ | μS | _ | | IS20 | TF:SCL | SDAx and SCLx | 100 kHz mode | _ | 300 | ns | CB is specified to be from | | İ | | Fall Time | 400 kHz mode | 20 + 0.1 CB | 300 | ns | 10 to 400 pF | | | | | 1 MHz mode
(Note 1) | _ | 100 | ns | | | IS21 | TR:SCL | SDAx and SCLx
Rise Time | 100 kHz mode | _ | 1000 | ns | CB is specified to be from | | | | | 400 kHz mode | 20 + 0.1 CB | 300 | ns | 10 to 400 pF | | | | | 1 MHz mode
(Note 1) | _ | 300 | ns | | | IS25 | Tsu:dat | Data Input | 100 kHz mode | 250 | _ | ns | _ | | | | Setup Time | 400 kHz mode | 100 | _ | ns | | | | | | 1 MHz mode (Note 1) | 100 | _ | ns | | | IS26 | THD:DAT | Data Input | 100 kHz mode | 0 | _ | ns | _ | | | | Hold Time | 400 kHz mode | 0 | 0.9 | μS | | | | | | 1 MHz mode (Note 1) | 0 | 0.3 | μS | | | IS30 | Tsu:sta | Start Condition | 100 kHz mode | 4700 | _ | ns | Only relevant for Repeated | | | | Setup Time | 400 kHz mode | 600 | _ | ns | Start condition | | | | | 1 MHz mode (Note 1) | 250 | _ | ns | | | IS31 | THD:STA | Start Condition | 100 kHz mode | 4000 | _ | ns | After this period, the first | | | | Hold Time | 400 kHz mode | 600 | _ | ns | clock pulse is generated | | | | | 1 MHz mode (Note 1) | 250 | _ | ns | | | IS33 | Tsu:sto | Stop Condition | 100 kHz mode | 4000 | _ | ns | _ | | | | Setup Time | 400 kHz mode | 600 | _ | ns | | | | | | 1 MHz mode
(Note 1) | 600 | _ | ns | | Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED) | AC CHARACTERISTICS | | | | | | | | |--------------------|---------|----------------------------|------------------------|------|-------|------------|----------------------------| | Param.
No. | Symbol | Charact | Min. | Max. | Units | Conditions | | | IS34 | THD:STO | Stop Condition | 100 kHz mode | 4000 | _ | ns | _ | | | | Hold Time | 400 kHz mode | 600 | _ | ns | | | | | | 1 MHz mode
(Note 1) | 250 | | ns | | | IS40 | TAA:SCL | Output Valid from
Clock | 100 kHz mode | 0 | 3500 | ns | _ | | | | | 400 kHz mode | 0 | 1000 | ns | | | | | | 1 MHz mode
(Note 1) | 0 | 350 | ns | | | IS45 | TBF:SDA | Bus Free Time | 100 kHz mode | 4.7 | _ | μS | The amount of time the bus | | | | | 400 kHz mode | 1.3 | | μS | must be free before a new | | | | | 1 MHz mode
(Note 1) | 0.5 | _ | μS | transmission can start | | IS50 | Св | Bus Capacitive Lo | ading | _ | 400 | pF | _ | Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). ## **TABLE 30-34: ADC MODULE SPECIFICATIONS** | | AC CHAF | RACTERISTICS | Standard Operating Conditions (see Note 5): 2.5V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +105^{\circ}\text{C}$ for V-temp | | | | | | | |---------------|------------|--|---|-------------|----------------------------------|----------|---|--|--| | Param.
No. | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | | | Device | Supply | | | | | | | | | | AD01 | AVDD | Module VDD Supply | Greater of
VDD – 0.3
or 2.5 | Ī | Lesser of
VDD + 0.3 or
3.6 | V | _ | | | | AD02 | AVss | Module Vss Supply | Vss | | AVDD | V | (Note 1) | | | | Referen | ce Inputs | | | | | | | | | | AD05
AD05a | VREFH | Reference Voltage High | AVss + 2.0
2.5 | | AVDD
3.6 | V
V | (Note 1)
VREFH = AVDD (Note 3) | | | | AD06 | VREFL | Reference Voltage Low | AVss | | VREFH - 2.0 | V | (Note 1) | | | | AD07 | VREF | Absolute Reference
Voltage (VREFH – VREFL) | 2.0 | 1 | AVDD | V | (Note 3) | | | | AD08
AD08a | IREF | Current Drain | | 250
— | 400
3 | μA
μA | ADC operating
ADC off | | | | Analog | Input | | | | | | | | | | AD12 | VINH-VINL | Full-Scale Input Span | VREFL | _ | VREFH | V | _ | | | | AD13 | VINL | Absolute VINL Input Voltage | AVss - 0.3 | _ | AVDD/2 | V | _ | | | | AD14 | Vin | Absolute Input Voltage | AVss - 0.3 | _ | AVDD + 0.3 | V | _ | | | | AD15 | _ | Leakage Current | _ | ±0.001 | ±0.610 | μA | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = $3.3V$
Source Impedance = $10 \text{ k}\Omega$ | | | | AD17 | Rin | Recommended
Impedance of Analog
Voltage Source | _ | _ | 5k | Ω | (Note 1) | | | | ADC Ac | curacy – N | leasurements with Exte | rnal VREF+/V | REF- | | | | | | | AD20c | Nr | Resolution | | 10 data bit | s | bits | _ | | | | AD21c | INL | Integral Non-linearity | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V | | | | AD22c | DNL | Differential Non-linearity | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V
(Note 2) | | | | AD23c | GERR | Gain Error | > -1 | _ | < 1 | LSb | VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3.3V | | | | AD24c | EOFF | Offset Error | > -1 | _ | < 1 | Lsb | VINL = AVSS = 0V,
AVDD = 3.3V | | | | AD25c | _ | Monotonicity | _ | _ | _ | _ | Guaranteed | | | - **Note 1:** These parameters are not characterized or tested in manufacturing. - 2: With no missing codes. - **3:** These parameters are characterized, but not tested in manufacturing. - 4: Characterized with a 1 kHz sine wave. - **5:** The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. ## 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | 3 | | |------------------------|------------------|----------|-------------|------|--| | | Dimension Limits | MIN | NOM | MAX | | | Number of Pins | N | | 44 | | | | Pitch | е | | 0.65 BSC | | | | Overall Height | A | 0.80 | 0.90 | 1.00 | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | Contact Thickness | A3 | | 0.20 REF | | | | Overall Width | E | | 8.00 BSC | | | | Exposed Pad Width | E2 | 6.30 | 6.45 | 6.80 | | | Overall Length | D | 8.00 BSC | | | | | Exposed Pad Length | D2 | 6.30 | 6.45 | 6.80 | | | Contact Width | b | 0.25 | 0.30 | 0.38 | | | Contact Length | L | 0.30 | 0.40 | 0.50 | | | Contact-to-Exposed Pad | K | 0.20 | - | _ | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-103B ## **INDEX** | Numerics | | Core Exception Types | | |---|-----|---|-----| | 50 MHz Electrical Characteristics | 301 | EJTAG Debug Support | | | ۸ | | Power Management | | | A | | CPU Module | | | AC Characteristics | | Customer Change Notification Service Customer Notification Service | | | 10-Bit Conversion Rate Parameters | | Customer Support | | | ADC Specifications | | Customer Support | 341 | | Analog-to-Digital Conversion Requirements | | D | | | EJTAG Timing Requirements | | DC and AC Characteristics | | | Internal FRC Accuracy | | Graphs and Tables | 307 | | Internal RC Accuracy | | DC Characteristics | | | OTG Electrical Specifications | | I/O Pin Input Specifications | | | Parallel Master Port Read Requirements | | I/O Pin Output Specifications | , | | Parallel Master Port Write | | Idle Current (IDLE) | | | Parallel Master Port Write Requirements | | Power-Down Current (IPD) | | | Parallel Slave Port Requirements | | Program Memory | | | PLL Clock Timing | | Temperature and Voltage Specifications | | | Analog-to-Digital Converter (ADC) | 209 | DC Characteristics (50 MHz) | | | Assembler | | , , | | | MPASM Assembler | 254 | Idle Current (IDLE)Power-Down Current (IPD) | | | В | | Development Support | | | | | · ·· | | | Block Diagrams | | Direct Memory Access (DMA) Controller | 03 | | ADC Module | | E | | | Comparator I/O Operating Modes | | Electrical Characteristics | 257 | | Comparator Voltage Reference | | AC | | | Connections for On-Chip Voltage Regulator | | Errata | | | Core and Peripheral Modules | | External Clock | | | CPU | 33 | Timer1 Timing Requirements | 275 | | CTMU Configurations | | Timer2, 3, 4, 5 Timing Requirements | | | Time Measurement | | Timing Requirements | | | DMA | | External Clock (50 MHz) | 270 | | I2C Circuit | | Timing Requirements | 304 | | Input Capture | | | | | Interrupt Controller | | F | | | JTAG Programming, Debugging and Trace Ports | | Flash Program Memory | 53 | | Output Compare Module | | RTSP Operation | | | PMP Pinout and Connections to External Devices. | | | | | Reset System | | I | | | RTCC | | I/O Ports | 127 | | SPI Module | | Parallel I/O (PIO) | | | Timer1 | | Write/Read Timing | | | Timer2/3/4/5 (16-Bit) | | Input Change Notification | | | Typical Multiplexed Port Structure | 127 | Instruction Set | | | UART | | Inter-Integrated Circuit (I2C | | | WDT and Power-up Timer | 153 | Internal Voltage Reference Specifications | | | Brown-out Reset (BOR) | | Internet Address | | | and On-Chip Voltage Regulator | 250 | Interrupt Controller | 63 | | С | | IRG, Vector and Bit Location | | | | | - | | | C Compilers | | M | | | MPLAB C18 | 254 | Memory Maps | | | Charge Time Measurement Unit. See CTMU. | | PIC32MX110/210 Devices | | | Clock Diagram | 74 | (4 KB RAM, 16 KB Flash) | 38 | | Comparator | | PIC32MX120/220 Devices | | | Specifications | | (8 KB RAM, 32 KB Flash) | 39 | | Comparator Module | | PIC32MX130/230 | | | Comparator Voltage Reference (CVref | | (16 KB RAM, 256 KB Flash) | 43 | | Configuration Bit | | PIC32MX130/230 Devices | | | Configuring Analog Port Pins | 128 | (16 KB RAM, 64 KB Flash) | 40 | | CPU | | PIC32MX150/250 Devices | | | Architecture Overview | | (32 KB RAM, 128 KB Flash) | 41 | | Coprocessor 0 Registers | 35 | PIC32MX170/270 | | ### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN:978-1-5224-0471-2