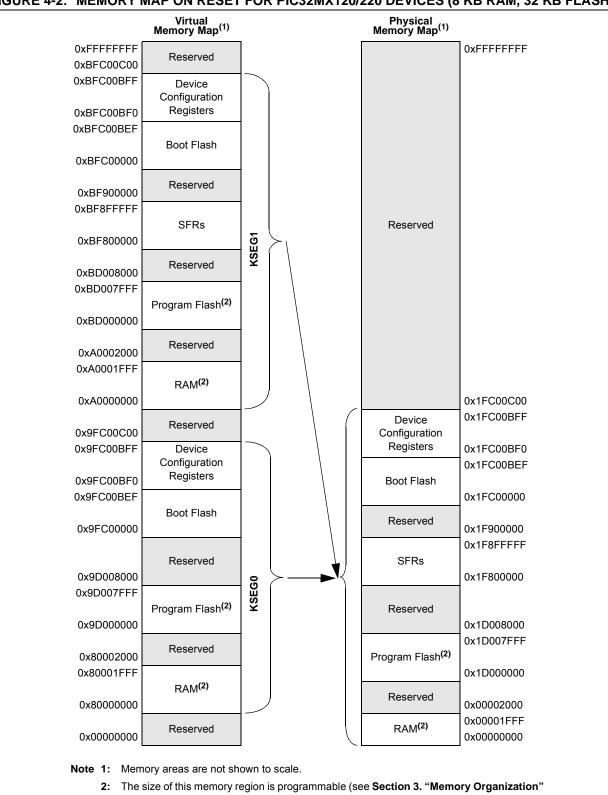


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

·XF

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f128bt-50i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX120/220 DEVICES (8 KB RAM, 32 KB FLASH)

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*") and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit											
Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	_	_	—	_	—	_	—			
00.40	U-0	U-0	U-0	U-0	U-0 U-0		U-0	U-0			
23:16	—	—	_	—	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8				BMXDU	DBA<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				BMXDU	DBA<7:0>						

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_		-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_		-	—
45.0	U-0	U-0	U-0	U-0 U-0		U-0	R/W-0, HS	R/W-0
15:8		_	_	-	_	_	CMR	VREGS
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS R/W-0, HS		R/W-1, HS
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-10 Unimplemented: Read as '0'

bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	1 = Regulator is enabled and is on during Sleep mode
	0 = Regulator is disabled and is off during Sleep mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset as not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view next detection.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	RODIV<14:8> ^(1,3)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23:16	RODIV<7:0> ^(1,3)												
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC					
15:8	ON	_	SIDL	OE	RSLP ⁽²⁾	_	DIVSWEN	ACTIVE					
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0						ROSEL	.<3:0>(1)						

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable	HS = Hardware Settable				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31 Unimplemented: Read as '0'

bit 30-16	RODIV<14:0> Reference Clock Divider bits ^(1,3)
	The value selects the reference clock divider bits. See Figure 8-1 for information.
bit 15	ON: Output Enable bit
	1 = Reference Oscillator module is enabled
	0 = Reference Oscillator module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Peripheral Stop in Idle Mode bit

- 1 = Discontinue module operation when the device enters Idle mode
 - 0 =Continue module operation when the device enters lide mode
- bit 12 **OE:** Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on REFCLKO pin
 - 0 = Reference clock is not driven out on REFCLKO pin
- bit 11 RSLP: Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator module output continues to run in Sleep
 - 0 = Reference Oscillator module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - **2:** This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	-	—	-	—	—	_	-				
23:16	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0				
23.10	—	—	—	—	—	—	—	—				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.0	—	-	—	-	—	—	-	-				
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS				
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF				
	DISEF	DIVIALE	DIVIALLY	BIOLE	DINOLF	GIVE IDEF	EOFEF ^(3,5)					

REGISTER 10-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-8 Unimplemented: Read as '0'
- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = The base address, of the Buffer Descriptor Table, or the address of an individual buffer pointed to by a Buffer Descriptor Table entry, is invalid.
 - 0 = No address error
- bit 5 DMAEF: DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out
- bit 3 **DFN8EF:** Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 11-5: PORTC REGISTER MAP

ess	-											Bits							
Virtual Address (BF88_#)	Register Name ^(1,2)	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16		_			—	—	_		_		_	_	—	_	—		0000
0200	,	15:0	—	—	—	—	—	—			—			_	ANSC3(4)	ANSC2 ⁽³⁾	ANSC1	ANSC0	000F
6210	TRISC	31:16	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—		0000
0210	11100	15:0	_	_	—	—	—	—	TRISC9	TRISC8 ⁽³⁾	TRISC7 ⁽³⁾	TRISC6 ⁽³⁾	TRISC5 ⁽³⁾	TRISC4 ⁽³⁾	TRISC3	TRISC2 ⁽³⁾	TRISC1	TRISC0	03FF
6220	PORTC	31:16	—	—	—	—	—	—	_		_		_						0000
0220 1 01(10	15:0	_	_	—	—	—	—	RC9	RC8 ⁽³⁾	RC7 ⁽³⁾	RC6 ⁽³⁾	RC5 ⁽³⁾	RC4 ⁽³⁾	RC3	RC2 ⁽³⁾	RC1	RC0	xxxx	
6230	LATC	31:16	_	_	—	—	—	—	_		_			_	—		—	—	0000
0230	6230 LATC	15:0			_	_	_	_	LATC9	LATC8 ⁽³⁾	LATC7 ⁽³⁾	LATC6 ⁽³⁾	LATC5 ⁽³⁾	LATC4 ⁽³⁾	LATC3	LATC2 ⁽³⁾	LATC1	LATC0	xxxx
6240	ODCC	31:16			_	_	_	_	_						_		_	_	0000
6240	ODCC	15:0			_	_	_	_	ODCC9	ODCC8 ⁽³⁾	ODCC7 ⁽³⁾	ODCC6 ⁽³⁾	ODCC5 ⁽³⁾	ODCC4 ⁽³⁾	ODCC3	ODCC2 ⁽³⁾	ODCC1	ODCC0	0000
0050		31:16			—	—	—	-	—	-	_	-	—	—	—	—	—	—	0000
6250	CNPUC	15:0	_	_	_	_	—	—	CNPUC9	CNPUC8 ⁽³⁾	CNPUC7 ⁽³⁾	CNPUC6 ⁽³⁾	CNPUC5 ⁽³⁾	CNPUC4 ⁽³⁾	CNPUC3	CNPUC2 ⁽³⁾	CNPUC1	CNPUC0	0000
0000		31:16	_	_	_	_	_	_	—	_	_	_	_	—	_	—	_	_	0000
6260	CNPDC	15:0	_	_	—	—	—	—	CNPDC9	CNPDC8 ⁽³⁾	CNPDC7 ⁽³⁾	CNPDC6 ⁽³⁾	CNPDC5 ⁽³⁾	CNPDC4 ⁽³⁾	CNPDC3	CNPDC2 ⁽³⁾	CNPDC1	CNPDC0	0000
0070	anaana	31:16	_	_	—	—	—	—	_	_	_	_	—	—	—	_	—	—	0000
6270	CNCONC	15:0	ON	_	SIDL	—	—	—	_	_	_	_	_	—	—	_	—	_	0000
		31:16	_	_	_		—	_			_		_	_	_	_	—	—	0000
6280	CNENC	15:0	_	_	_		—	_	CNIEC9	CNIEC8(3)	CNIEC7 ⁽³⁾	CNIEC6(3)	CNIEC5 ⁽³⁾	CNIEC4 ⁽³⁾	CNIEC3	CNIEC2 ⁽³⁾	CNIEC1	CNIEC0	0000
		31:16	_	_	_	_	_	_	_		_		_	_	—		—	—	0000
6290	CNSTATC	15:0	_	_	_	_	_	_	CNSTATC9	CNSTATC8(3)	CNSTATC7 ⁽³⁾	CNSTATC6(3)	CNSTATC5(3)	CNSTATC4 ⁽³⁾	CNSTATC3	CNSTATC2(3)	CNSTATC1	CNSTATC0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: PORTC is not available on 28-pin devices.

3: This bit is only available on 44-pin devices.

4: This bit is only available on USB-enabled devices with 36 or 44 pins.

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

ss			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	RPC8R ⁽¹⁾	31:16	_	—	—	—	_	_	—	_	_	—	—	_	_	—	—	_	0000
FB8C	RPCOR	15:0	—	—	—	—	—	_	—	—	_	—	—	—		RPC8	<3:0>		0000
5000	RPC9R ⁽³⁾	31:16	—	—	—	—	_	_	—	_	_	—	—	_	_	—	—	—	0000
FB90	KPC9R ^w	15:0		—	—	—	_	-	—	—	_	_	—			RPC9	<3:0>		0000

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

2:

This register is only available on 44-pin devices. This register is only available on PIC32MX1XX devices. This register is only available on 36-pin and 44-pin devices. 3:

14.1 Watchdog Timer Control Registers

TABLE 14-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		6		Bits												s			
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	—	_	—	_		_	_	-	_	—	-	_	—	-	—	0000
0000	WDICON	15:0	ON	_		_	_	_		_							0000		

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

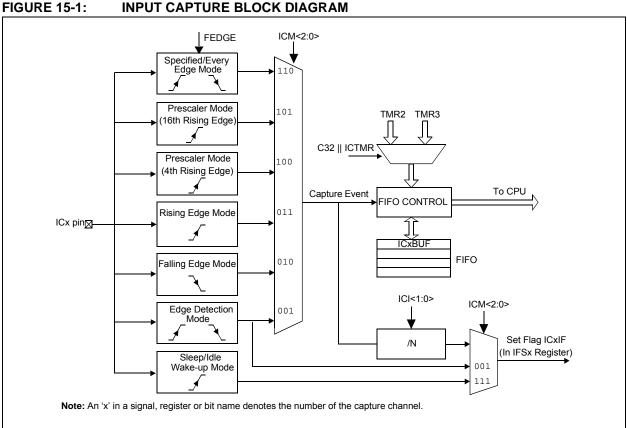
INPUT CAPTURE 15.0

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:

- · Simple capture event modes:
 - Capture timer value on every rising and falling edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.


- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- · Device wake-up from capture pin during Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values (interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled)
- · Input capture can also be used to provide additional sources of external interrupts

Figure 15-1 illustrates a general block diagram of the Input Capture module.

16.1 Output Compare Control Registers

TABLE 16-1: OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP

ess			Bits																
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	OC1CON	31:16	—	—	—	—	—	—	—	_	—	—	—	—	—	_	—	_	0000
0000	001001	15:0	ON	—	SIDL	—	—	—		—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3010	OC1R	31:16 15:0								OC1R	<31:0>								xxxx
3020	OC1RS	31:16 15:0								OC1RS	S<31:0>								xxxx
0000	00000	31:16	—	_	_	_	_	_		_	—	—	_	—	—	—	—	—	0000
3200	OC2CON	15:0	ON	_	SIDL	_	_	_	_	_	_	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3210	OC2R	31:16								OC2R	~21.0>								xxxx
3210	UCZR	15:0								UCZR	<31.0>								xxxx
3220	OC2RS	31:16								OC2RS	2-31-05								XXXX
3220	00283	15:0								UCZRO	5<31.02								XXXX
3400	OC3CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	—		—		0000
3400	003001	15:0	ON	_	SIDL	_	_	_	_	_	-	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3410	OC3R	31:16 15:0								OC3R	<31:0>								XXXX XXXX
3420	OC3RS	31:16								OC3R8	221.05								XXXX
3420	00383	15:0								UCSRC	5-51.0-								XXXX
3600	OC4CON	31:16	—	_	_	_	_	_	_	_	—	—	_	—	—		—	_	0000
3000	004001	15:0	ON	_	SIDL	_	_	_	_	_	-	_	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3610	OC4R	31:16								OC4R	<31.0>								XXXX
3010	0041	15:0								0041	ST.02								xxxx
3620	OC4RS	31:16								OC4RS	231.05								xxxx
3020	00410	15:0								00400	5-51.02								xxxx
3800	OC5CON	31:16	-	_	—	_	_	_	_	_	-	_	—	—	—		—		0000
3000	000000	15:0	ON	—	SIDL	—	—	—	—	—	—	—	OC32	OCFLT	OCTSEL		OCM<2:0>		0000
3810	OC5R	31:16								OC5R	<31.0>								XXXX
3010	0000	15:0								OUJK	-01.02								xxxx
3820	OC5RS	31:16								OC5RS	<31·0>								xxxx
3020	00010	15 [.] 0								00000	-01.02								xxxx

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

17.1 SPI Control Registers

TABLE 17-1: SPI1 AND SPI2 REGISTER MAP

ess		Bits																	
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	_	-	—	_	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5910	SPI1STAT	31:16	—	_	_		RXE	BUFELM<4:	0>		—	—	-		TX	BUFELM<4	:0>		0000
5610		15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5820	SPI1BUF	31:16								DATA<	31.0>								0000
3020		15:0								Brance	.01.0								0000
5830	SPI1BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	_	—	_						E	3RG<12:0>							0000
		31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	_	—	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	_		FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	-	-	AUD MONO	_	AUDMC)D<1:0>	0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—			_		SPIFE	ENHBUF	0000
5A00	3F1200N	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5410	SPI2STAT	31:16	—	—			RXE	BUFELM<4:	0>		_	-			TX	BUFELM<4	:0>		0000
SATU	3F1231AI	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0008
5A20	SPI2BUF	31:16								DATA<	31.0>								0000
5420		15:0								Brance									0000
5A30	SPI2BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5730		15:0		—	—						E	3RG<12:0>							0000
		31:16	—	—	—	_	—	_	—	—	—	—	_	—	—	—	—	—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

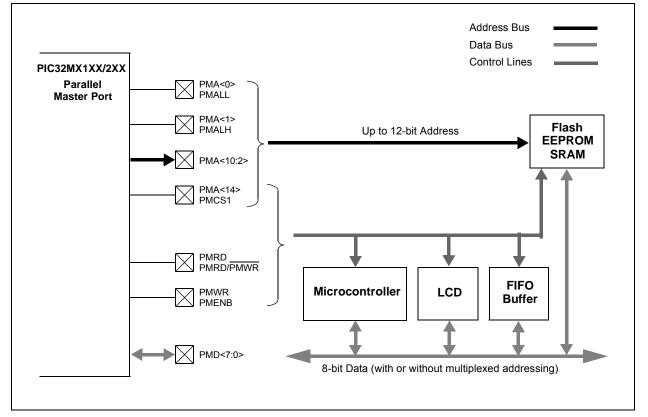
Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

20.0 PARALLEL MASTER PORT (PMP)


Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128),
	which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. Key features of the PMP module include:

- Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single Chip Select
 - up to 12 address lines without Chip Select
- One Chip Select line
- Programmable strobe options
 - Individual read and write strobes or;
 - Read/write strobe with enable strobe
- · Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- · Legacy parallel slave port support
- · Enhanced parallel slave support
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait states
- · Selectable input voltage levels

Figure 20-1 illustrates the PMP module block diagram.

FIGURE 20-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 Трв
 - 10 = Wait of 3 Трв
 - 01 = Wait of 2 TPB
 - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 Трв
- 10 = Wait of 2 TPB
- 01 = Wait of 1 ТРВ
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 5-4 **Unimplemented:** Read as '0'
- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read
 If the register is read twice and results in the same data, the data can be assumed to be valid
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC clock output enabled clock presented onto an I/O
 - 0 = RTCC clock output disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can be set only when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

23.1 Comparator Control Registers

TABLE 23-1: COMPARATOR REGISTER MAP

ess		0								Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
4000	CM1CON	31:16	_	—	_	_	-	_		-	—	_	-	—	—	—	_	_	0000
A000	CIVITCON	15:0	ON	COE	CPOL	_	—	_	—	COUT	EVPO	L<1:0>	—	CREF	_	—	CCH	<1:0>	00C3
A010	CM2CON	31:16	—	-			-		-	-	—	—	-	_	—	—		—	0000
AUTO	CIVIZCON	15:0	ON	COE	CPOL	_		_		COUT	EVPO	L<1:0>		CREF	_	_	CCH	<1:0>	00C3
A020	CM3CON	31:16	_	_	_	_		_			_	_		_	_	_	_	_	0000
A020	CIVISCON	15:0	ON	COE	CPOL	_	—	_	—	COUT	EVPO	L<1:0>	—	CREF	_	—	CCH	<1:0>	00C3
A060	CMSTAT	31:16	—	_	_	_	-	_	_		—	_	-	_	_	—	_	—	0000
7000	CIVISTAI	15:0	_	_	SIDL	_		_			-	_		_		C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

NOTES:

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

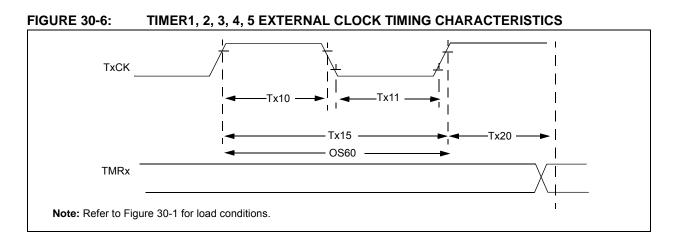
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 30-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS


DC CHA		STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments				
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1				
D313	DACREFH	CVREF Input Voltage	AVss	_	AVDD	V	CVRSRC with CVRSS = 0				
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1				
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size				
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size				
D315	DACRES	Resolution	—	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>				
			_	—	DACREFH/32	_	CVRCON <cvrr> = 0</cvrr>				
D316	DACACC	Absolute Accuracy ⁽²⁾		_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>				
				_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>				

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 30-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHA	RACTERIS	STICS	(unles	ard Operat s otherwis ing temper	e stated ature	1) -40°C ≤ [°]	: 2.3V to 3.6V TA \leq +85°C for Industrial TA \leq +105°C for V-temp
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (1 ohm). Typical voltage on the VCAP pin is 1.8V.

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	ARACTERIS	TICS ⁽¹⁾		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$									
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Typical	Max.	Units	Conditions				
TA10	T⊤xH	TxCK High Time	Synchronow with presca		[(12.5 ns or 1 ТРВ)/N] + 25 ns	—	—	ns	Must also meet parameter TA15				
			Asynchrono with presca		10	—	_	ns	—				
TA11	T⊤xL	TxCK Low Time	Synchronor with presca		[(12.5 ns or 1 Трв)/N] + 25 ns	—	—	ns	Must also meet parameter TA15				
			Asynchrono with presca		10	_	_	ns	—				
TA15	ΤτχΡ	TxCK Input Period	Synchrono with presca		[(Greater of 25 ns or 2 Трв)/N] + 30 ns	-	_	ns	VDD > 2.7V				
					[(Greater of 25 ns or 2 Трв)/N] + 50 ns	-	—	ns	VDD < 2.7V				
			Asynchrono with presca		20	-	_	ns	VDD > 2.7V (Note 3)				
					50	-	_	ns	VDD < 2.7V (Note 3)				
OS60	FT1	SOSC1/T1C Input Freque (oscillator en the TCS (T10	ncy Range abled by set		32	—	100	kHz	-				
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment		К		—	1	Трв	—				

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).