

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

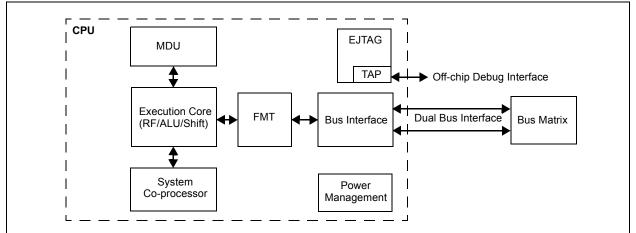
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f128bt-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at: www.imgtec.com.


The MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX1XX/2XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the destinations.

3.1 Features

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 2)
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - Bit field manipulation instructions

- MIPS16e[®] code compression
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) mechanism
- · Simple dual bus interface
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- · Autonomous multiply/divide unit
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- Power control
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG debug and instruction trace
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

FIGURE 3-1: MIPS32[®] M4K[®] PROCESSOR CORE BLOCK DIAGRAM

TABLE 4-1: SFR MEMORY MAP

	Virtual A	ddress
Peripheral	Base	Offset Start
Watchdog Timer		0x0000
RTCC		0x0200
Timer1-5		0x0600
Input Capture 1-5		0x2000
Output Compare 1-5		0x3000
IC1 and IC2		0x5000
SPI1 and SPI2		0x5800
UART1 and UART2		0x6000
PMP		0x7000
ADC	0xBF80	0x9000
CVREF		0x9800
Comparator		0xA000
CTMU		0xA200
Oscillator		0xF000
Device and Revision ID		0xF220
Peripheral Module Disable		0xF240
Flash Controller		0xF400
Reset		0xF600
PPS		0xFA04
Interrupts		0x1000
Bus Matrix		0x2000
DMA	0xBF88	0x3000
USB		0x5050
PORTA-PORTC		0x6000
Configuration	0xBFC0	0x0BF0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
31:24				NVMKE	Y<31:24>			
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
23:16				NVMKE	Y<23:16>			
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
15:8				NVMK	EY<15:8>			
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
7:0			•	NVMK	EY<7:0>			

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMADI	DR<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMADDR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8				NVMAD	DR<15:8>						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMAE)DR<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—		_	—
23:16	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	—	—	_	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	_	_	_	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	_			TUN<	5:0> (1)		

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess		Bits																	
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	DCH1SSIZ	31:16	—	_	—	_		_	_	_	_		-	_	-	—	_		0000
5170	DOITIOOIZ	15:0								CHSSIZ	2<15:0>								0000
3180	DCH1DSIZ	31:16	_	_		—	—	—	_	-	—	—	_		_	—	_	—	0000
5100	DOITIDOIZ	15:0								CHDSIZ	2<15:0>								0000
3190	DCH1SPTR	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_	0000
0100		15:0								CHSPTI	R<15:0>								0000
31A0	DCH1DPTR	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
017.00		15:0								CHDPT	R<15:0>								0000
31B0	DCH1CSIZ	31:16	_	_	—	—	—	—	_	_	—	—	_	—	—	—	—	-	0000
0.20		15:0								CHCSIZ	2<15:0>								0000
31C0	DCH1CPTR	31:16	_	_	_	—	—	—	_	_	—	—	—		—	—	—		0000
0.00		15:0								CHCPTI	R<15:0>								0000
31D0	DCH1DAT	31:16	—	_	—	—	—	—	—	_	_	—	—		—	—	—		0000
0.20		15:0	—	_	—	—	—	—	—	_				CHPDA					0000
31F0	DCH2CON	31:16	—	_	—	—	—	—	—	_		_	—	_	_	—	—		0000
0.20			CHBUSY	_	_	—	_	_		CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	<1:0>	0000
31F0	DCH2ECON	31:16	_	_	—	—	—	—	_	_				CHAIR					00FF
		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	—	—	FF00
3200	DCH2INT	31:16	—	—	—	—	—	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	_	_		—	—	—			CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3210	DCH2SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
3220		31:16								CHDSA	<31:0>								0000
		15:0								1									0000
3230	DCH2SSIZ	31:16		—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
		15:0								CHSSIZ	2<15:0>								0000
3240	DCH2DSIZ	31:16			—	_	—	_	_	<u> </u>	—	—	—	—	—	—	_	—	0000
		15:0								CHDSIZ	2<15:0>								0000
3250	DCH2SPTR	31:16			—	_	—	_	_	<u> </u>	—	—	—	—	—	—	_		0000
		15:0								CHSPTI	≺<15:0>								0000
3260	DCH2DPTR	31:16			—	_	—	_	_	—	—	—	—	—	—	—	—	—	0000
		15:0								CHDPTI	R<15:0>								0000
3270	DCH2CSIZ	31:16		_	—	—	—	—	—		—	—	—	—	—	—	_		0000
		15:0								CHCSI2 exadecimal									0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess		ē					-			Bi	ts								s
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3280	DCH2CPTR	31:16	—	_	_	_		_		—		_	_			_	_		0000
5200	DONZOFIK	15:0								CHCPT	R<15:0>								0000
3290	DCH2DAT	31:16	_	_	—	—		_		—	_	_	—	_	—	_	_		0000
3290	DCHZDAI	15:0	_		_	_		-		-				CHPDA	AT<7:0>				0000
2240	DCH3CON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
32A0	DCH3CON	15:0	CHBUSY	_	_	_				CHCHNS	CHEN	CHAED	CHCHN	CHAEN	—	CHEDET	CHPR	l<1:0>	0000
3280	DCH3ECON	31:16	—	_	—	—	_	_	_	—				CHAIR	Q<7:0>				OOFF
5200		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_	FF00
32C0	DCH3INT	31:16	—	—	—	—	-	_	-	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0200		15:0	—			_	—	_	_	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
32D0	DCH3SSA	31:16 15:0								CHSSA	<31:0>								0000
		31:16																	0000
32E0	DCH3DSA	15:0								CHDSA	<31:0>								0000
0050	00100017	31:16		_			_	_	_							_		_	0000
32FU	DCH3SSIZ	15:0								CHSSIZ	2<15:0>								0000
2200	DCH3DSIZ	31:16	—	—	—	—	_	—	_	—	_	—	—	—	—	_	—	_	0000
3300	DCH3D3IZ	15:0								CHDSIZ	2<15:0>								0000
3310	DCH3SPTR	31:16	—	_	—	_				_	—		_		_				0000
3310	DOI IJOF I K	15:0								CHSPTF	۲<15:0>								0000
3320	DCH3DPTR	31:16	—	—	—	—	_	_	_	—	_	_	—	—	—	_	—	_	0000
0020		15:0								CHDPT	R<15:0>								0000
3330	DCH3CSIZ	31:16	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0								CHCSIZ	2<15:0>								0000
3340	DCH3CPTR	31:16	_	—	—	—	_	—	_	—	—	—	—	—	—	—	—	_	0000
		15:0								CHCPT	≺<15:0>								0000
3350	DCH3DAT	31:16	—	_	—	_	_		—	_	_	—	—	-	— T :7 0:	—	—	—	0000
<u> </u>		15:0	—	—	—	—	—	—	—	_				CHPDA	AT<7:0>				0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	-	—	_	_	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	—	_	_	_	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_		_	RDWR	Γ	DMACH<2:0>	>

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
31:24				DMAADDF	?<31:24>							
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	DMAADDR<23:16>											
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				DMAADD	R<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0	DMAADDR<7:0>											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
31:24	—	—	_	—	_	—	_	_					
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16		_			_		_						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
15:8				CHCSIZ	<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7:0		CHCSIZ<7:0>											

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

			•••••••••••				-					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	—	—	_	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	—	—	—	—				
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
15:8				CHCPTR	<15:8>							
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0		CHCPTR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_				—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—			-	—		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	-	—	—	-	-	—	-	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
7:0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled

bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit

- 1 = 1 millisecond timer interrupt is enabled
- 0 = 1 millisecond timer interrupt is disabled

bit 5 LSTATEIE: Line State Interrupt Enable bit

- 1 = Line state interrupt is enabled
- 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = Activity interrupt is enabled
 - 0 = Activity interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
 - 1 = B-Device session end interrupt is enabled
 - 0 = B-Device session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
 - 1 = A-Device VBUS valid interrupt is enabled
 - 0 = A-Device VBUS valid interrupt is disabled

TABLE 11-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

SS										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB00	RPA0R	31:16		—	—	—	_	_	—	_	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	_	_	—	_	_	—	—	—		RPA0	<3:0>		0000
FB04	RPA1R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 001		15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA1	<3:0>		0000
FB08	RPA2R	31:16	—	—	-	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
1 000	i (i / t <u></u>	15:0	—	—	-	—	—	_	—	—	_	—	—	—		RPA2	<3:0>		0000
FB0C	RPA3R	31:16	_	_	—	—	_	_	_	_	_	—	_	—	_	—		—	0000
T BOC		15:0	_		—	_	_	_	—	_	_		—	_		RPA3	<3:0>		0000
FB10	RPA4R	31:16		_	_	_	_	_	_	_	_		_	_	_			—	0000
T D IO		15:0	—	—	—	—	_		—	_		—	—	—		RPA4	<3:0>		0000
FB20	RPA8R ⁽¹⁾	31:16	—	—	—	—	_		—	_		—	—	—	_	—	—	—	0000
1 020		15:0	_	—	—	—	_		—	_		—	—	—		RPA8	<3:0>		0000
FB24	RPA9R ⁽¹⁾	31:16	—	—	—	—	-		_	-		_	_	—	-	—	_	—	0000
1 D24	KFA9K /	15:0	—	—	—	—	-		_	-		_	_	—		RPA9	<3:0>		0000
FB2C	RPB0R	31:16	_	_	—	—	_	-	_	_	-	—	_	—	_	_	_	—	0000
1 020	KF DUK	15:0	_	—	—	—	_	_	—	_	_	—	—	—		RPB0	<3:0>		0000
FB30	RPB1R	31:16	_	_	—	—			—			—	—	—		_	—	—	0000
FB30	REDIR	15:0	_	_	—	—			—			—	—	—		RPB1	<3:0>		0000
FB34	RPB2R	31:16	_	_	_	_			_			_	_	_		_	_	—	0000
FB34	RPBZR	15:0	_	—	—	—	—	_	_	—	_	—	_	—		RPB2	<3:0>		0000
FB38	RPB3R	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
FB30	RPBJR	15:0	_	—	—	—	—	_	_	—	_	—	_	—		RPB3	<3:0>		0000
FD2C		31:16	_	—	—	—	—	_	_	—	_	—	_	—	—	—	—	—	0000
FB3C	RPB4R	15:0	_	—	—	_	_	_	_	_	_	_	_	_		RPB4	<3:0>		0000
ED 40		31:16			—	—	—	-	—	—	—	—	—	—	_			—	0000
FB40	RPB5R	15:0	_		—											RPB5	<3:0>		0000
5044		31:16	_	—	_	—	—	_	_	_	_	—	_	—	_	_	_	—	0000
FB44	RPB6R ⁽²⁾	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB6	<3:0>		0000
50.40		31:16	_	—	_	—	_	_	_	_	_	—	_	—	_	_	_	—	0000
FB48	RPB7R	15:0	_	—	_	—	_	_	_	_	_	—	_	—		RPB7	<3:0>		0000

DS60001168J-page 138

x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register is only available on 44-pin devices. Note 1:

2: This register is only available on PIC32MX1XX devices.

3: This register is only available on 36-pin and 44-pin devices. PIC32MX1XX/2XX 28/36/44-PIN FAMILY

17.1 SPI Control Registers

TABLE 17-1: SPI1 AND SPI2 REGISTER MAP

ess		Ċ,								Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—	_	-	—	_	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5910	SPI1STAT	31:16	—	_	_		RXE	BUFELM<4:	0>		—	—	-		TX	BUFELM<4	:0>		0000
5610		15:0	_	—	—	FRMERR	SPIBUSY	—	—	SPITUR	SRMT	SPIROV	SPIRBE	—	SPITBE	—	SPITBF	SPIRBF	0008
5820	SPI1BUF	31:16								DATA<	31.0>								0000
3020		15:0								Brance	.01.0								0000
5830	SPI1BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	_	—	_						E	3RG<12:0>							0000
		31:16	—	—	—	—	—	—	—	—	—	—	_	_	—	_	—	—	0000
5840	SPI1CON2	15:0	SPI SGNEXT	_		FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	-	-	AUD MONO	_	AUDMC)D<1:0>	0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:()>	MCLKSEL	—			_		SPIFE	ENHBUF	0000
5A00	3F1200N	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	L<1:0>	SRXISE	EL<1:0>	0000
5410	SPI2STAT	31:16	—	—			RXE	BUFELM<4:	0>		_	-			TX	BUFELM<4	:0>		0000
SATU	3F1231AI	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0008
5A20	SPI2BUF	31:16								DATA<	31.0>								0000
5420		15:0								Brance									0000
5A30	SPI2BRG	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
5730		15:0		—	—						E	3RG<12:0>							0000
		31:16	—	—	—	_	—	_	—	—	—	—	_	—	—	—	—	—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	—	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	_	_	AUD MONO	_	AUDMC)D<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	-	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit			

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I ²	C module is busy
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

- bit 6 I2COV: Receive Overflow Flag bit
 - 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24			_	_	_	-	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_	_	-	-	_	_	—
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	_	MODE	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	WAITE<1:0>(1)			

REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

3						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle⁽²⁾
- 00 = No increment or decrement of address
- bit 10 Unimplemented: Read as '0'
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
 - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)
- bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
 - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
 - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
 - 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits⁽¹⁾

- 1111 = Wait of 16 Трв •
- . 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

NOTES:

TABLE 22-1: ADC REGISTER MAP (CONTINUED)

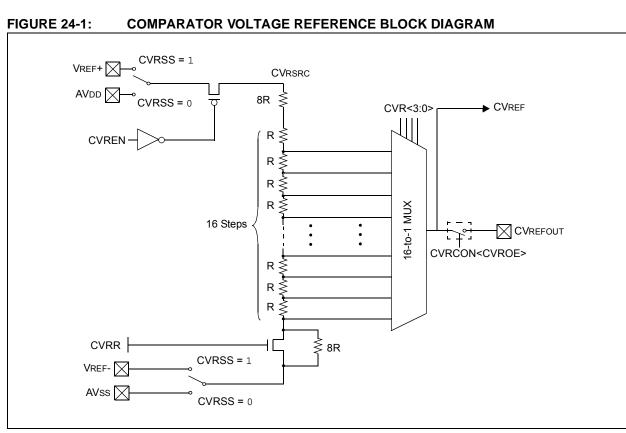
ess		a		Bits									Ś						
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9120	ADC1BUFB	31:16							ADC Res	ult Word B		B<31.0>)							0000
0120	ABO IBOI B	15:0		ADC Result Word B (ADC1BUFB<31:0>)									0000						
0130	ADC1BUFC	31:16	ADC Result Word C (ADC1BUFC<31:0>)									0000							
9130	ADCIDUIC	15:0							ADC NES		(ADC ID01	0~31.0~)							0000
0140	ADC1BUFD	31:16	ADC Result Word D (ADC1BUFD<31:0>)									0000							
9140	ADC IDOI D	15:0							ADC Nes		(ADC ID01	D~31.0~)							0000
0150	ADC1BUFE	31:16	ADC Result Word E (ADC1BUFE<31:0>)								0000								
3150		15:0									0000								
0160		31:16										0000							
9160 ADC1BUFF ADC Result Word F (ADC1BUFF<31:0>)										0000									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for details.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

24.0 COMPARATOR VOLTAGE REFERENCE (CVREF)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the module is shown in Figure 24-1.

NOTES:

TABLE 26-2: PERIPHERAL MODULE DISABLE REGISTER MAP

ess			Bits								6								
Virtual Address (BF80_#)	(BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F0.40	PMD1	31:16	—	—	_	—	_	_	_	—	—	—	—	—	_	—	—	—	0000
F240	FIVIDI	15:0	-			CVRMD	Ι			CTMUMD	—	-		-			—	AD1MD	0000
5250	PMD2	31:16	—	—		—	_	_		—	—	—	—	—	_	—	—	—	0000
F250	FIVIDZ	15:0	-			—	Ι			—	—	-		-		CMP3MD	CMP2MD	CMP1MD	0000
F260	PMD3	31:16	_	-		_	-			_	_		_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
F200	FIVIDS	15:0	_			_	-			_	_		_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	0000
F270	PMD4	31:16	_			_	-			_	_		_	-	_	_	—	_	0000
F270	F IVID4	15:0	_			_	-			_	_		_	T5MD	T4MD	T3MD	T2MD	T1MD	0000
F280	PMD5	31:16	_			_	-			USB1MD	_		_	-	_	_	I2C1MD	I2C1MD	0000
F200	FIVIDS	15:0	_			_	-		SPI2MD	SPI1MD	_		_	-	_	_	U2MD	U1MD	0000
F200	PMD6	31:16	_	—		—	_	_		_	—	_	—	—	_	—	—	PMPMD	0000
F290	I WD0	15:0	—	_	_	—	_	_	-	—	—	_	_	_	_	_	REFOMD	RTCCMD	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

AC CHA	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
Clock P	arameters	S	•						
AD50	TAD	ADC Clock Period ⁽²⁾	65			ns	See Table 30-35		
Convers	sion Rate						·		
AD55	TCONV	Conversion Time	_	12 Tad	—	_	—		
AD56 F	FCNV	Throughput Rate	—	_	1000	ksps	AVDD = 3.0V to 3.6V		
		(Sampling Speed)	—	_	400	ksps	AVDD = 2.5V to 3.6V		
AD57	TSAMP	Sample Time	1 Tad	_	—	_	TSAMP must be \geq 132 ns		
Timing	Paramete	rs							
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾		1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad	—	1.5 Tad	_	_		
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—		_		
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	_	_	2	μS	_		

TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.5V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

Revision J (April 2016)

This revision includes the following major changes as described in Table A-8, as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE A-8: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog"	The PIC32MX270FDB device and Note 4 were added to TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" .
2.0 "Guidelines for Getting Started with 32-bit MCUs"	EXAMPLE 2-1: "Crystal Load Capacitor Calculation" was updated.
30.0 "Electrical Characteristics"	Parameter DO50a (Csosc) was removed from the Capacitive Loading Requirements on Output Pins AC Characteristics (see Table 30-16).
"Product Identification System"	The device mapping was updated to include type B for Software Targeting.