

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 [®] M4K [™]
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f128dt-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4:PIN NAMES FOR 28-PIN USB DEVICES

28	PIN SOIC, SPDIP, SSOP (TOP VIEW) ^(1,2,3)					
	1 SSOP	28	1 SOIC	28	1	28 SPDIP
	PIC32MX210F016B PIC32MX220F032B PIC32MX230F064B PIC32MX230F256B PIC32MX250F128B PIC32MX270F256B					
Pin #	Full Pin Name	Pin #		Full Pin N	Name	
Pin #	Full Pin Name	Pin #	VBUS	Full Pin N	Name	
Pin # 1 2	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	Pin # 15 16	VBUS TDI/RPB7/CTED3/PM	Full Pin N	Name	
Pin # 1 2 3	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	Pin # 15 16 17	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE	Full Pin N D5/INT0/RE	Name 37 /RB8	
Pin # 1 2 3 4	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	Pin # 15 16 17 18	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	Pin # 15 16 17 18 19	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	Pin # 15 16 17 18 19 20	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I	Name 37 /RB8 RB9	
Pin # 1 2 3 4 5 6 7	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	Pin # 15 16 17 18 19 20 21	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss	Pin # 15 16 17 18 19 20 21 21 22	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I FED11/RB10 11	Name 37 /RB8 RB9 0	
Pin # 1 2 3 4 5 6 7 8 9 10	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I TED11/RB10 11 PMRD/RB13	Name 37 /RB8 RB9 0 3	
Pin # 1 2 3 4 5 6 7 8 9 10 11	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4	Pin # 15 16 17 18 19 20 21 22 23 24 25	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/I CVREFOUT/AN10/C3IN	Full Pin N D5/INT0/RE D10/PMD4, ED4/PMD3/I FED11/RB10 11 IB/RPB14/V	Name 37 /RB8 RB9 0 3 /BUSON/S	SCK1/CTED5/RB14
Pin # 1 2 3 4 5 6 7 8 9 10 11 12	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INB/C3IND/RPB0/PMD0/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/f CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB11 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 5/PMCS1	SCK1/CTED5/RB14 1/RB15
Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13	Full Pin Name MCLR PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1 PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0 PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 SOSCO/RPA4/T1CK/CTED9/PMA1/RA4 VpD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	VBUS TDI/RPB7/CTED3/PM TCK/RPB8/SCL1/CTE TDO/RPB9/SDA1/CTE VSS VCAP PGED2/RPB10/D+/CT PGEC2/RPB11/D-/RB VUSB3V3 AN11/RPB13/CTPLS/F CVREFOUT/AN10/C3IN AN9/C3INA/RPB15/SC AVSS	Full Pin N D5/INT0/RE D10/PMD4/ ED4/PMD3/I TED11/RB10 11 PMRD/RB13 IB/RPB14/V CK2/CTED6	Name 37 /RB8 RB9 0 0 3 /BUSON/S 6)/PMCS1	SCK1/CTED5/RB14 1/RB15

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

TABLE 10: PIN NAMES FOR 44-PIN USB DEVICES

44-PIN QFN (TOP VIEW)^(1,2,3,5)

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

			44 1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	RPB9/SDA1/CTED4/PMD3/RB9	23	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2
2	RPC6/PMA1/RC6	24	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3
3	RPC7/PMA0/RC7	25	AN6/RPC0/RC0
4	RPC8/PMA5/RC8	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMA6/RC9	27	AN8/RPC2/PMA2/RC2
6	Vss	28	VDD
7	VCAP	29	Vss
8	PGED2/RPB10/D+/CTED11/RB10	30	OSC1/CLKI/RPA2/RA2
9	PGEC2/RPB11/D-/RB11	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	32	TDO/RPA8/PMA8/RA8
11	AN11/RPB13/CTPLS/PMRD/RB13	33	SOSCI/RPB4/RB4
12	PGED4/TMS/PMA10/RA10	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4/TCK/CTED8/PMA7/RA7	35	TDI/RPA9/PMA9/RA9
14	CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14	36	AN12/RPC3/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15	37	RPC4/PMA4/RC4
16	AVss	38	RPC5/PMA3/RC5
17	AVdd	39	Vss
18	MCLR	40	VDD
19	PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0	41	RPB5/USBID/RB5
20	PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1	42	VBUS
21	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	43	RPB7/CTED3/PMD5/INT0/RB7
22	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1	44	RPB8/SCL1/CTED10/PMD4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016D and PIC32MX120F032D devices.

5: Shaded pins are 5V tolerant.

		Pin Nu	mber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
OC1	PPS	PPS	PPS	PPS	0	_	Output Compare Output 1
OC2	PPS	PPS	PPS	PPS	0	—	Output Compare Output 2
OC3	PPS	PPS	PPS	PPS	0	—	Output Compare Output 3
OC4	PPS	PPS	PPS	PPS	0	—	Output Compare Output 4
OC5	PPS	PPS	PPS	PPS	0	—	Output Compare Output 5
OCFA	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault A Input
OCFB	PPS	PPS	PPS	PPS	I	ST	Output Compare Fault B Input
INT0	13	16	17	43	I	ST	External Interrupt 0
INT1	PPS	PPS	PPS	PPS	I	ST	External Interrupt 1
INT2	PPS	PPS	PPS	PPS	I	ST	External Interrupt 2
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4
RA0	27	2	33	19	I/O	ST	PORTA is a bidirectional I/O port
RA1	28	3	34	20	I/O	ST	1
RA2	6	9	7	30	I/O	ST	1
RA3	7	10	8	31	I/O	ST	1
RA4	9	12	10	34	I/O	ST	1
RA7	_	_	_	13	I/O	ST	1
RA8	_	_	_	32	I/O	ST	
RA9	_	_	_	35	I/O	ST	1
RA10	_	_	_	12	I/O	ST	
RB0	1	4	35	21	I/O	ST	PORTB is a bidirectional I/O port
RB1	2	5	36	22	I/O	ST	7
RB2	3	6	1	23	I/O	ST	7
RB3	4	7	2	24	I/O	ST	
RB4	8	11	9	33	I/O	ST	
RB5	11	14	15	41	I/O	ST	
RB6	12 ⁽²⁾	15 (2)	16 (2)	42 ⁽²⁾	I/O	ST	
RB7	13	16	17	43	I/O	ST	
RB8	14	17	18	44	I/O	ST	
RB9	15	18	19	1	I/O	ST	
RB10	18	21	24	8	I/O	ST	
RB11	19	22	25	9	I/O	ST	
RB12	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾	10 ⁽²⁾	I/O	ST	1
RB13	21	24	27	11	I/O	ST	1
RB14	22	25	28	14	I/O	ST	1
RB15	23	26	29	15	I/O	ST	
Legend:	CMOS = CN	MOS compa	atible input	or output		Analog =	Analog input P = Power
	SI = Schmi	tt Irigger in	put with CN	VIOS levels		O = Outp	out I = Input
Note 1.			lod for rofo	ronco only	See the	"Pin Diag	$m_{\text{rem}} = N/A$

DINOUT I/O DESCRIPTIONS (CONTINUED)

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

Interrupt Source ⁽¹⁾ IRQ Vect				Persistent			
interrupt Source ^v	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
U1E – UART1 Fault	39	32	IFS1<7>	IEC1<7>	IPC8<4:2>	IPC8<1:0>	Yes
U1RX – UART1 Receive Done	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>	Yes
U1TX – UART1 Transfer Done	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1B – I2C1 Bus Collision Event	42	33	IFS1<10>	IEC1<10>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1S – I2C1 Slave Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1M – I2C1 Master Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes
CNA – PORTA Input Change Interrupt	45	34	IFS1<13>	IEC1<13>	IPC8<20:18>	IPC8<17:16>	Yes
CNB – PORTB Input Change Interrupt	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>	Yes
CNC – PORTC Input Change Interrupt	47	34	IFS1<15>	IEC1<15>	IPC8<20:18>	IPC8<17:16>	Yes
PMP – Parallel Master Port	48	35	IFS1<16>	IEC1<16>	IPC8<28:26>	IPC8<25:24>	Yes
PMPE – Parallel Master Port Error	49	35	IFS1<17>	IEC1<17>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2E – SPI2 Fault	50	36	IFS1<18>	IEC1<18>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2RX – SPI2 Receive Done	51	36	IFS1<19>	IEC1<19>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2TX – SPI2 Transfer Done	52	36	IFS1<20>	IEC1<20>	IPC9<4:2>	IPC9<1:0>	Yes
U2E – UART2 Error	53	37	IFS1<21>	IEC1<21>	IPC9<12:10>	IPC9<9:8>	Yes
U2RX – UART2 Receiver	54	37	IFS1<22>	IEC1<22>	IPC9<12:10>	IPC9<9:8>	Yes
U2TX – UART2 Transmitter	55	37	IFS1<23>	IEC1<23>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2B – I2C2 Bus Collision Event	56	38	IFS1<24>	IEC1<24>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2S – I2C2 Slave Event	57	38	IFS1<25>	IEC1<25>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2M – I2C2 Master Event	58	38	IFS1<26>	IEC1<26>	IPC9<20:18>	IPC9<17:16>	Yes
CTMU – CTMU Event	59	39	IFS1<27>	IEC1<27>	IPC9<28:26>	IPC9<25:24>	Yes
DMA0 – DMA Channel 0	60	40	IFS1<28>	IEC1<28>	IPC10<4:2>	IPC10<1:0>	No
DMA1 – DMA Channel 1	61	41	IFS1<29>	IEC1<29>	IPC10<12:10>	IPC10<9:8>	No
DMA2 – DMA Channel 2	62	42	IFS1<30>	IEC1<30>	IPC10<20:18>	IPC10<17:16>	No
DMA3 – DMA Channel 3	63	43	IFS1<31>	IEC1<31>	IPC10<28:26>	IPC10<25:24>	No
		Lowes	st Natural O	rder Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

FIGURE 8-1: OSCILLATOR DIAGRAM

 Refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual" for help in determinin best oscillator components.

3. The PBCLK out is only available on the OSC2 pin in certain clock modes.

4. The USB PLL is only available on PIC32MX2XX devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	-	—	—	—	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_		_	_		—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_		_	_		—	_
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾		USUSPEND	USBPWR

REGISTER 10-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Note 1: When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

REGISTER 10-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	_	—	_		_	_	_	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.9	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—	—		_	—	_	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLIE	ATTACHIE	RESIMEIE		TRNIE	SOFIE		URSTIE ⁽²⁾
	OTALLIL			IDELIE		OOLIE	OLIVIL	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL	Handshake	Interrupt Enable	bit

- 1 = STALL interrupt is enabled
- 0 = STALL interrupt is disabled
- bit 6 ATTACHIE: ATTACH Interrupt Enable bit
 - 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled
- bit 5 **RESUMEIE:** RESUME Interrupt Enable bit
 - 1 = RESUME interrupt is enabled
 - 0 = RESUME interrupt is disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
 - 1 = Idle interrupt is enabled
 - 0 = Idle interrupt is disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
 - 1 = TRNIF interrupt is enabled
 - 0 = TRNIF interrupt is disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
 - 1 = SOFIF interrupt is enabled
 - 0 = SOFIF interrupt is disabled
- bit 1 UERRIE: USB Error Interrupt Enable bit⁽¹⁾
 - 1 = USB Error interrupt is enabled
 - 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt is enabled
 - 0 = URSTIF interrupt is disabled

DETACHIE: USB Detach Interrupt Enable bit⁽³⁾

- 1 = DATTCHIF interrupt is enabled
- 0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE (U1IE<1>) bit must be set.

- 2: Device mode.
- 3: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		_		—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—				_	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—				_	_	_
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 10-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a Low-Speed device enabled
 - 0 = Direct connection to a Low-Speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

11.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

11.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin.

Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.3.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.3.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 11-1, are used to configure peripheral input mapping (see Register 11-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 11-1.

For example, Figure 11-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 11-4: PORTB REGISTER MAP

ess										Bits									
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6100	ANSEL B	31:16	_	—	—	—	-	-	_	—	-	-	—	_	_	—	—	_	0000
0100	,	15:0	ANSB15	ANSB14	ANSB13	ANSB12 ⁽²⁾	_		—	—	_	_	—	—	ANSB3	ANSB2	ANSB1	ANSB0	E00F
6110	TRISB	31:16	_	_	—	—	—	_	—	—	—		—	_	—	—	—	—	0000
		15:0	TRISB15	TRISB14	TRISB13	TRISB12(2)	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6(2)	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6120	PORTB	31:16	_		_		_	—	_	_	_		_						0000
		15:0	RB15	RB14	RB13	RB12(2)	RB11	RB10	RB9	RB8	RB7	RC6(2)	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
6130	LATB	31:16		-	-		-	-	—	-			-	-	—	—	-	—	0000
		15:0	LAIB15	LAIB14	LAIB13	LAIB12(2)	LAI B11	LAIB10	LATB9	LAI B8	LAIB7	LAIB6(2)	LAI B5	LAI B4	LATB3	LATB2	LAIB1	LAIBO	XXXX
6140	ODCB	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
		15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB1	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCR0	0000
6150	CNPUB	31:16																	0000
		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12-	CNPUBIT	CNPUBIU	CNPUB9	CNPUB8	CNPUB/	CNPUB6-	CNP0B5	CNPUB4	CNP0B3	CNP0B2	CNPUBI	CNPUBU	0000
6160	CNPDB	31:10																	0000
		15.0	CNPDB15	CINPUB14	CNPDB13	CNPDB12	CNPDBT	CNPDBIU	CNPDB9	CNPDBo	CNPDB/	CNPDB0	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDBI	CNPDBU	0000
6170	CNCONB	15.0			SIDI														0000
		31.16																	0000
6180	CNENB	15.0	CNIEB15	CNIEB14	CNIEB13	CNIEB11(2)	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6(2)	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
		31:16	_	_	_	_	_	_				_							0000
6190	CNSTATB		CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	CN	
		15:0	STATB15	STATB14	STATB13	STATB12(2)	STATB11	STATB10	STATB9	STATB8	STATB7	STATB6 ⁽²⁾	STATB5	STATB4	STATB3	STATB2	STATB1	STATB0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This bit is not available on PIC32MX2XX devices. The reset value for the TRISB register when this bit is not available is 0x0000EFBF.

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	_	—	—	—
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ADRC	—	—			SAMC<4:0>(1)		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0
7:0				ADCS<	7:0> ⁽²⁾			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC (AD1CON3<15>) bit = 1.

REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 18-10 **PWP<8:0>:** Program Flash Write-Protect bits⁽³⁾

	Prevents selected program Flash memory pages from being modified during code execution.
	<pre>11111111 = Disabled 11111111 = Memory below 0x0400 address is write-protected 111111101 = Memory below 0x0800 address is write-protected 11111100 = Memory below 0x0C00 address is write-protected 111111011 = Memory below 0x1000 (4K) address is write-protected 111111010 = Memory below 0x1400 address is write-protected 111111001 = Memory below 0x1800 address is write-protected 111111000 = Memory below 0x1C00 address is write-protected 111111011 = Memory below 0x2000 (8K) address is write-protected</pre>
	111110110 = Memory below 0x2400 address is write-protected 111110101 = Memory below 0x2800 address is write-protected 111110100 = Memory below 0x2C00 address is write-protected 111110011 = Memory below 0x3000 address is write-protected
	111110010 = Memory below 0x3400 address is write-protected 111110001 = Memory below 0x3800 address is write-protected 11110000 = Memory below 0x3C00 address is write-protected 111101111 = Memory below 0x4000 (16K) address is write-protected
	110111111 = Memory below 0x10000 (64K) address is write-protected
	101111111 = Memory below 0x20000 (128K) address is write-protected
	<pre>. 011111111 = Memory below 0x40000 (256K) address is write-protected .</pre>
	00000000 = All possible memory is write-protected
bit 9-5	Reserved: Write '1'
bit 4-3	ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits ⁽²⁾ 11 = PGEC1/PGED1 pair is used 10 = PGEC2/PGED2 pair is used 01 = PGEC3/PGED3 pair is used 00 = PGEC4/PGED4 pair is used ⁽²⁾
bit 2	JTAGEN: JTAG Enable bit ⁽¹⁾ 1 = JTAG is enabled 0 = JTAG is disabled
bit 1-0	DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled) 1x = Debugger is disabled 0x = Debugger is enabled
Note 1: 2:	This bit sets the value for the JTAGEN bit in the CFGCON register. The PGEC4/PGED4 pin pair is not available on all devices. Refer to the " Pin Diagrams " section for availability.

3: The PWP<8:7> bits are only available on devices with 256 KB Flash.

DC CHA	OC CHARACTERISTICS Param. Symbol Characteristic OO10 VOL Output Low Voltage I/O Pins Output High Voltage			d Opera otherwi g tempe	iting Co se state erature	anditions: 2.3V to 3.6V and and an analysis of the second state			
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
DO10	Vol	Output Low Voltage	_	_	0.4	V	$\text{Iol} \leq 10 \text{ mA}, \text{ Vdd} = 3.3 \text{V}$		
		Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -14 mA, VDD = 3.3V		
020	Мон	I/O Pins	2.0 ⁽¹⁾	—	—		IOH \ge -12 mA, VDD = 3.3V		
0020	VOH		2.4	_	_	v	Ioh \geq -10 mA, Vdd = 3.3V		
			3.0(1)	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$		

TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHA				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾ Typical Max		Max.	Units	Conditions				
BO10	VBOR	BOR Event on VDD transition high-to-low ⁽²⁾	2.0		2.3	V	_				

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	Standard (unless of Operating	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristi	cs ⁽¹⁾	Min.	Typical	Max.	Units	Conditions			
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3.92	_	5	MHz	ECPLL, HSPLL, XTPLL, FRCPLL modes			
OS51	Fsys	On-Chip VCO System Frequency		60	_	120	MHz	_			
OS52	TLOCK	PLL Start-up Time (Lock Time)		_	—	2	ms	—			
OS53	53 DCLK CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)					+0.25	%	Measured over 100 ms period			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 30-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾									
F20b	F20b FRC		_	+0.9	%	_			

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	Standar (unless Operatir	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$								
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions					
	⊉ 31.25 kHz ⁽¹⁾										
F21	F21 LPRC		_	+15	%	_					

Note 1: Change of LPRC frequency as VDD changes.

TABLE 30-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH/	ARACTERIS	TICS		Standar (unless Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics ⁽¹⁾			Min.	Max. Units Condit		ditions			
TB10	ТтхН	TxCK High Time	xCK Synchronous, with igh Time prescaler		[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	N = prescale value (1, 2, 4, 8,		
TB11	ΤτχL	TxCK Low Time	K Synchronous, with Time prescaler		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter TB15	16, 32, 64, 256)		
TB15	T⊤xP	TxCK Synchronous, with Input prescaler		[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V				
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	_	ns	VDD < 2.7V			
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment			—	1	Трв	_	-		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 30-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Charac	cteristics ⁽¹⁾	Min.	Max.	Units	Con	ditions		
IC10	TccL	ICx Input Low Time		[(12.5 ns or 1 ТРВ)/N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)		
IC11	ТссН	ICx Input High Time		h Time [(12.5 ns or 1 TPB)/N] + 25 ns		ns	Must also meet parameter IC15.			
IC15	TCCP	ICx Input	t Period	[(25 ns or 2 Трв)/N] + 50 ns	_	ns	_			

Note '	1:	These	parameters a	are charac	terized, bu	it not f	tested in	manufacturing	
--------	----	-------	--------------	------------	-------------	----------	-----------	---------------	--

FIGURE 30-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2		_	ns	_
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—	-	ns	—
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	_
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	_	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31
SP35	TscH2doV, TscL2doV	H2DOV, SDOx Data Output Valid after .2DOV SCKx Edge	_	—	20	ns	VDD > 2.7V
			—	—	30	ns	VDD < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 30-19: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 31-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		I	ns	—
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2			ns	—
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 31-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2	_	—	ns	_
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2		—	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E			
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A