

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx250f128dt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.1 Flash Controller Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		Ċ,								Bit	s								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400		31:16		—	—	—	—		—	—	—	—	—	_	—	—			0000
1400		15:0	WR	WREN	WRERR	LVDERR	LVDSTAT	_	_	_	_	_	_			NVMO	P<3:0>		0000
E410		31:16									/~21.0>								0000
1410		15:0									S1.02								0000
E420		31:16									D-21.05								0000
F420	NVINADUR' /	15:0								INVIVIADD	K~31.0~								0000
E420		31:16									A 221:05								0000
F430	NVINDATA	15:0								NVIVIDAL	AS1.02								0000
E440		31:16							N		21.05								0000
F440	NVIVISRCADDR	15:0							IN	VIVISRCAL	JDK<31:0>	•							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

TABLE 7-2: INTERRUPT REGISTER MAP (CONTINUED)

ess		đ		Bits															
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1100		31:16	—	—	—		SPI1IP<2:0>		SPI1IS	<1:0>	—	—	—	US	BIP<2:0>(2	:)	USBIS	<1:0> (2)	0000
1100	IPC/	15:0	-	—	_	(CMP3IP<2:0>	>	CMP3IS	6<1:0>	-	_		CN	/IP2IP<2:0>	•	CMP2I	S<1:0>	0000
1110		31:16		—	_		PMPIP<2:0>		PMPIS	<1:0>	_	_		C	NIP<2:0>		CNIS	<1:0>	0000
1110	IFCO	15:0	-	_	-		I2C1IP<2:0>		I2C1IS	<1:0>	_		-	L	J1IP<2:0>		U1IS	<1:0>	0000
1120		31:16	-	—	_	(CTMUIP<2:0	>	CTMUIS	S<1:0>	-	_		12	C2IP<2:0>		12C215	6<1:0>	0000
1120	IFC9	15:0		—	_		U2IP<2:0>		U2IS<	:1:0>	_	_		S	PI2IP<2:0>		SPI2IS	6<1:0>	0000
1120		31:16	—	—	—	[DMA3IP<2:0>	>	DMA3IS	6<1:0>	—	—	_	DN	/IA2IP<2:0>	•	DMA2I	S<1:0>	0000
1130	IPC10	15:0	_	_	_	[DMA1IP<2:0>	>	DMA1IS	S<1:0>	—	_	—	DN	/A0IP<2:0>	•	DMA0I	S<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 8-1: OSCILLATOR DIAGRAM

 Refer to Section 6. "Oscillator Configuration" (DS60001112) in the "PIC32 Family Reference Manual" for help in determinin best oscillator components.

3. The PBCLK out is only available on the OSC2 pin in certain clock modes.

4. The USB PLL is only available on PIC32MX2XX devices.

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

9.1 DMA Control Registers

TABLE 9-1: DMA GLOBAL REGISTER MAP

ess		0								Bi	ts								6
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2000		31:16	_	-	_	—	—	—	—	_	_	—	—	—	_	—	—	_	0000
3000	DIVIACON	15:0	ON	—	—	SUSPEND	DMABUSY	_	_	_	_	_	—	_	—	—	—	—	0000
3010	DMASTAT	31:16	—	-	—	—	_	_	_	_	_	_	_	_	_	—	_	—	0000
3010	DIVIASTAT	15:0			_	_	_	_	_	_	_	_	_	_	RDWR	DI	MACH<2:0>	(2)	0000
3020		31:16									D-31.05								0000
3020	DIVIAADDIN	15:0								DIVIAADL	N<51.02								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

TABLE 9-2: DMA CRC REGISTER MAP

ess										В	its								
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2020	DCBCCON	31:16	—	—	BYTC)<1:0>	WBO	—	—	BITO	_	—	_	_	_	_	_	_	0000
3030	DCRCCON	15:0	_	_	_			PLEN<4:0>	•		CRCEN	CRCAPP	CRCTYP	—	_	C	RCCH<2:0	>	0000
2040		31:16		D0D0D4T4 (21.0)															
3040	DCRCDAIA	15:0		DCRCDATA <st.0></st.0>															
2050	DCBCVOB	31:16								DCBCV	D-21.05								0000
3050	DUNUAUR	15:0		DCRCXOR<31:0>															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	_	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	_	—	_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
h:+ 00	0 = Interrupt is disabled
DIT 22	
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled $0 = Interrupt is disabled$
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
© 2011-201	16 Microchip Technology Inc. D

DS60001168J-page 95

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	-	—
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON	—	USBSIDL	—	—	—	UASUSPND

REGISTER 10-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB OE Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
 0 = OE signal is inactive

bit 5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 10-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock.

12.2 Timer1 Control Registers

TABLE 12-1: TIMER1 REGISTER MAP

ess		0								В	its								6
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600		31:16	_	—	—	—	-	—	—	—	-	—	—	-	—	-	-	—	0000
0000	TICON	15:0	ON	_	SIDL	TWDIS	TWIP	—	_	—	TGATE	_	TCKP	S<1:0>	—	TSYNC	TCS	_	0000
0610		31:16	_	_	—	—	—	—	_	—	—	_	_	—	—	—	—	_	0000
0010		15:0								TMR1	<15:0>								0000
0620	DD1	31:16	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	0000
0020	FÅL	15:0								PR1<	<15:0>								FFFF

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	_	_		—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	_	_		—	—
7:0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 12-6 Unimplemented: Read as '0'

- bit 5 OC32: 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in hardware only)
 - 0 = No PWM Fault condition has occurred
- bit 3 **OCTSEL:** Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin enabled
 - 110 = PWM mode on OCx; Fault pin disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

2: This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT<2:0>				
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
23.10	MCLKSEL ⁽²⁾	—	—	-	—	—	SPIFE	ENHBUF ⁽²⁾		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
10.0	ON ⁽¹⁾	—	SIDL	DISSDO	MODE32	MODE16	SMP	CKE ⁽³⁾		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	SSEN	CKP ⁽⁴⁾	MSTEN	DISSDI	STXISEL<1:0>		SRXISEL<1:0>			

REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 FRMEN: Framed SPI Support bit

- 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
 0 = Framed SPI support is disabled
- bit 30 **FRMSYNC:** Frame Sync Pulse Direction Control on <u>SSx</u> pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - $\ensuremath{\mathtt{1}}$ = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in FRAMED_SYNC mode.
 - 111 = Reserved; do not use
 - 110 = Reserved; do not use
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23 MCLKSEL: Master Clock Enable bit⁽²⁾
 - 1 = REFCLK is used by the Baud Rate Generator
 - 0 = PBCLK is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

26.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 26-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TARI E 26-1·	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS
TADLL 20-1.	FERIFILICAL MODULE DISABLE DITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location		
ADC1	AD1MD	PMD1<0>		
CTMU	CTMUMD	PMD1<8>		
Comparator Voltage Reference	CVRMD	PMD1<12>		
Comparator 1	CMP1MD	PMD2<0>		
Comparator 2	CMP2MD	PMD2<1>		
Comparator 3	CMP3MD	PMD2<2>		
Input Capture 1	IC1MD	PMD3<0>		
Input Capture 2	IC2MD	PMD3<1>		
Input Capture 3	IC3MD	PMD3<2>		
Input Capture 4	IC4MD	PMD3<3>		
Input Capture 5	IC5MD	PMD3<4>		
Output Compare 1	OC1MD	PMD3<16>		
Output Compare 2	OC2MD	PMD3<17>		
Output Compare 3	OC3MD	PMD3<18>		
Output Compare 4	OC4MD	PMD3<19>		
Output Compare 5	OC5MD	PMD3<20>		
Timer1	T1MD	PMD4<0>		
Timer2	T2MD	PMD4<1>		
Timer3	T3MD	PMD4<2>		
Timer4	T4MD	PMD4<3>		
Timer5	T5MD	PMD4<4>		
UART1	U1MD	PMD5<0>		
UART2	U2MD	PMD5<1>		
SPI1	SPI1MD	PMD5<8>		
SPI2	SPI2MD	PMD5<9>		
I2C1	I2C1MD	PMD5<16>		
12C2	I2C2MD	PMD5<17>		
USB ⁽²⁾	USBMD	PMD5<24>		
RTCC	RTCCMD	PMD6<0>		
Reference Clock Output	REFOMD	PMD6<1>		
PMP	PMPMD	PMD6<16>		

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

2: The module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTERISTICS Standard Op (unless othe Operating ten				perating Conditions: 2.3V to 3.6V erwise stated) emperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Parameter No.	Typical ⁽²⁾	Max.	Units Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)								
DC30a	1	1.5	mA	4 MHz (Note 3)				
DC31a	2	3	mA		10 MHz			
DC32a	4	6	mA		20 MHz (Note 3)			
DC33a	5.5	8	mA		30 MHz (Note 3)			
DC34a	7.5	11	mA	40 MHz				
DC37a	100	_	μA	-40°C		LPRC (31 kHz)		
DC37b	250	—	μA	+25°C	(Note 3)			
DC37c	380	_	μA	+85°C				

TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

- UCD DLL as sillator is dischard if the LLCD readule is implemented
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Conditions			
		Program Flash Memory ⁽³⁾						
D130	Eр	Cell Endurance	20,000	—	—	E/W	_	
D131	Vpr	VDD for Read	2.3	—	3.6	V	—	
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated	
D135	IDDP	Supply Current during Programming	_	10	—	mA	_	
	Tww	Word Write Cycle Time	—	411	—	es	See Note 4	
D136	Trw	Row Write Cycle Time	—	6675	—	Cycl	See Note 2,4	
D137	Тре	Page Erase Cycle Time	—	20011	—	с С	See Note 4	
	TCE	Chip Erase Cycle Time	—	80180		ц Ц	See Note 4	

TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

3: Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.

4: This parameter depends on FRC accuracy (See Table 30-19) and FRC tuning values (See Register 8-2).

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS ⁽¹⁾				Star (un Ope	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽²⁾			Min.	Typical	Max.	Units	Conditions	
TA10	Т⊤хН	TxCK High Time	Synchrono with presc	ous, aler	[(12.5 ns or 1 TPB)/N] + 25 ns	—	—	ns	Must also meet parameter TA15	
			Asynchror with presc	nous, aler	10	—		ns	—	
TA11	ΤτxL	TxCK Low Time	Synchronous with prescale		[(12.5 ns or 1 ТРв)/N] + 25 ns	—		ns	Must also meet parameter TA15	
			Asynchror with presc	nous, aler	10	—		ns	—	
TA15	ΤτχΡ	TxCK Input Period	Synchrono with presc	ous, aler	[(Greater of 25 ns or 2 TPB)/N] + 30 ns	-	_	ns	VDD > 2.7V	
					[(Greater of 25 ns or 2 TPB)/N] + 50 ns	—	_	ns	VDD < 2.7V	
			Asynchror with presc	nous, aler	20	-	_	ns	VDD > 2.7V (Note 3)	
					50	-	_	ns	VDD < 2.7V (Note 3)	
OS60	FT1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting the TCS (T1CON<1>) bit)		r etting bit)	32	_	100	kHz	_	
TA20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	_	1	Трв	_		

Note 1: Timer1 is a Type A timer.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

FIGURE 30-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 30-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	ARACTERIS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	—	_	ns	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—
SP20	TscF	SCKx Output Fall Time (Note 4)	—	—	—	ns	See parameter DO32
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	—		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	—	_	ns	See parameter DO31
SP35	TscH2doV,	SDOx Data Output Valid after	_		15	ns	VDD > 2.7V
	TscL2DoV	SCKx Edge	_	_	20	ns	VDD < 2.7V
SP36	TDOV2sc, TDOV2scL	SDOx Data Output Setup to First SCKx Edge	15	—		ns	—
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	15	_	_	ns	VDD > 2.7V
	TDIV2scL	SCKx Edge	20	—		ns	VDD < 2.7V
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15	—	_	ns	VDD > 2.7V
	TscL2DIL	to SCKx Edge	20	—	—	ns	VDD < 2.7V

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS				Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp			
Param. No.	Symbol	Charact	Characteristics		Max.	Units	Conditions
IS10	TLO:SCL Clock Low Time 100 kHz mo		100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	—	μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	PBCLK must operate at a minimum of 800 kHz
			400 kHz mode	0.6	_	μS	PBCLK must operate at a minimum of 3.2 MHz
			1 MHz mode (Note 1)	0.5	—	μS	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode (Note 1)	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode (Note 1)	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode (Note 1)	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		ns	—
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode (Note 1)	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	—	ns	Start condition
			1 MHz mode (Note 1)	250	_	ns	
IS31	THD:STA	Start Condition	100 kHz mode	4000		ns	After this period, the first
		Hold Time	400 kHz mode	600	_	ns	clock pulse is generated
			1 MHz mode (Note 1)	250	—	ns	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000	_	ns	_
		Setup Time	400 kHz mode	600	—	ns]
			1 MHz mode (Note 1)	600		ns	

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

FIGURE 32-1: I/O OUTPUT VOLTAGE HIGH (VOH)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support