

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Becano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f256b-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nu	mber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
USBID	₁₁ (3)	14 ⁽³⁾	15 (3)	41 ⁽³⁾	I	ST	USB OTG ID detect
CTED1	27	2	33	19	I	ST	CTMU External Edge Input
CTED2	28	3	34	20	I	ST	7
CTED3	13	16	17	43	I	ST	7
CTED4	15	18	19	1	I	ST	7
CTED5	22	25	28	14	I	ST	7
CTED6	23	26	29	15	I	ST	7
CTED7	_	_	20	5	I	ST	7
CTED8	_		_	13	I	ST	7
CTED9	9	12	10	34	I	ST	7
CTED10	14	17	18	44	I	ST	7
CTED11	18	21	24	8	I	ST	7
CTED12	2	5	36	22	I	ST	7
CTED13	3	6	1	23	I	ST	7
CTPLS	21	24	27	11	0	_	CTMU Pulse Output
PGED1	1	4	35	21	I/O	ST	Data I/O pin for Programming/Debuggin Communication Channel 1
PGEC1	2	5	36	22	Ι	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	18	21	24	8	I/O	ST	Data I/O pin for Programming/Debuggin Communication Channel 2
PGEC2	19	22	25	9	I	ST	Clock input pin for Programming/Debugging Communication Channel 2
PGED3	11 ⁽²⁾ 27 ⁽³⁾	14 ⁽²⁾ 2 ⁽³⁾	15 ⁽²⁾ 33 ⁽³⁾	41 ⁽²⁾ 19 ⁽³⁾	I/O	ST	Data I/O pin for Programming/Debuggin Communication Channel 3
	12 (2)	15 (2)	16 (2)	42 ⁽²⁾		OT	Clock input pin for Programming/
PGEC3	28 ⁽³⁾	3 (3)	34 ⁽³⁾	20 ⁽³⁾		ST	Debugging Communication Channel 3
PGED4	—	—	3	12	I/O	ST	Data I/O pin for Programming/Debuggir Communication Channel 4
PGEC4	—	—	4	13	I	ST	Clock input pin for Programming/ Debugging Communication Channel 4

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer PPS = Peripheral Pin Select

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

— = N/A

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then

adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX1XX/2XX family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the PIC32MX1XX/2XX family core.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved in the PIC32MX1XX/2XX family core.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX1XX/2XX family core.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		—	_		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	-
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	—	_		_	_	S	RIPL<2:0>(1)	
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			VEC	<5:0> ⁽¹⁾		

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾
 - 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

D:/	Dit	Dit	D:	Dit	D'i	D''	Dir	Dit					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
31:24				IPTMF	<31:24>								
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
23.10	IPTMR<23:16>												
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0					
10.0				IPTM	R<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	IPTMR<7:0>												

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

TABLE 10-1: USB REGISTER MAP (CONTINUED)

ess							- /				Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	—	—	—	—	—	_	—		_	—	—	—	_	—	—	0000
5390	UIEF9	15:0			—	—	—	—	_	—			—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5240	U1EP10	31:16	_	—	_	_			_	—	_	_	_	—	_	_	—	_	0000
53A0	UIEPIU	15:0		_	_	-	_	_	_	-	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
53BU	UIEPII	15:0	_	—	_	_			_	—	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEFIZ	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	_	-	-	_	—	—	—	_	—	—	—	_	_	—	0000
5500	UIEF 13	15:0		—	_	-	-	_	—	—	—	_	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_		-	_	_	_	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_		_		_	_		_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_	_	_		_		_	_		_	_	—	_	_	_	_	0000
53F0	U1EP15	15:0	_	_	_	_	_	_	_	—			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

			COB BOILTE	DECON				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	-	—	-	—	—	—
22:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_		—	-			—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—	_	—	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	H<23:16>			

REGISTER 10-18: U1BDTP2: USB BUFFER DESCRIPTOR TABLE PAGE 2 REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 23 through 16 of the Buffer Descriptor Table base address, which defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

REGIOT		UIDDIF5. U	OD DOI 1 E					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—			_	_	—	—
23:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0
23.10							_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_				-	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	U<31:24>			

REGISTER 10-19: U1BDTP3: USB BUFFER DESCRIPTOR TABLE PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRU<31:24>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 31 through 24 of the Buffer Descriptor Table base address, defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

13.2 Timer Control Registers

TABLE 13-1: TIMER2-TIMER5 REGISTER MAP

	- 15																		
ess										Bi	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0800	T2CON	31:16	_	_	—	_	—	—	—	—	—	-	—	_	—	_	_	-	0000
0000	12001	15:0	ON		SIDL	—	—	—	_	_	TGATE	-	TCKPS<2:0>	>	T32	—	TCS	—	0000
0810	TMR2	31:16	—	—	—	—	—	—	_	—	—	—	—	—		—	—	_	0000
0010		15:0		TMR2<15:0> 0000															
0820	PR2	31:16	—																
0020		15:0		PR2<15:0> FFFF															
0040	T3CON	31:16	—	—	—	_	—	—	—	—	—	-	—	—	—	_	—	—	0000
0/100	10001	15:0	ON	—	SIDL	_	—	—	—	—	TGATE		TCKPS<2:0>	>	—	_	TCS	—	0000
0A10	TMR3	31:16		_	_	—	_	—		—		—	—	_	—	_	_		0000
0,110	-	15:0								TMR3	<15:0>								0000
0A20	PR3	31:16	—	—	—	—	—	—	_	—	—	_	—	_		—	—		0000
	_	15:0								PR3<	:15:0>								FFFF
0C00	T4CON	31:16	_	_	—	—	—	—	—	_	—	—	—	—	—	—	_	—	0000
		15:0	ON	—	SIDL	—	—		_	—	TGATE	-	TCKPS<2:0	>	T32	—	TCS		0000
0C10	TMR4	31:16	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
		15:0								TMR4									0000
0C20	PR4	31:16	_	—	—	—	—	—	_	-	—	_	—	_	—	_	—		0000
		15:0									:15:0>								FFFF
0E00	T5CON	31:16	-	_	-	_		—		_							— T00		0000
		15:0	ON		SIDL	_			_	_	TGATE		TCKPS<2:0>		_	_	TCS	_	0000
0E10	TMR5	31:16	—	—	—	_	—	—	—			_	—	—	—	_	—	_	0000
<u> </u>		15:0								TMR5	<15:0>								0000
0E20	PR5	31:16																	
		15:0					d a stal Da				15:02								FFFF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 18-1: I2CxCON: I²C CONTROL REGISTER

				0					
Bit Bit Range 31/23/15/7				Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	—	—	_	_	
22:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		—	_	_	_	_	_	_	
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	0N ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	

Legend:	HC = Cleared in Hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** I²C Enable bit⁽¹⁾

bit 12

- 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
- 0 = Disables the I^2C module; all I^2C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock
 - 0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 DISSLW: Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		-	_	-	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	-
15.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	red			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit		

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No collisionHardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I ² C module is busy	
0 = No collision	

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

- 1 = Indicates that the last byte received was data
- 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

REGISTER 18-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit 1 = Indicates that a Stop bit has been detected last
	 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range			Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_	_	-	_	-	—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

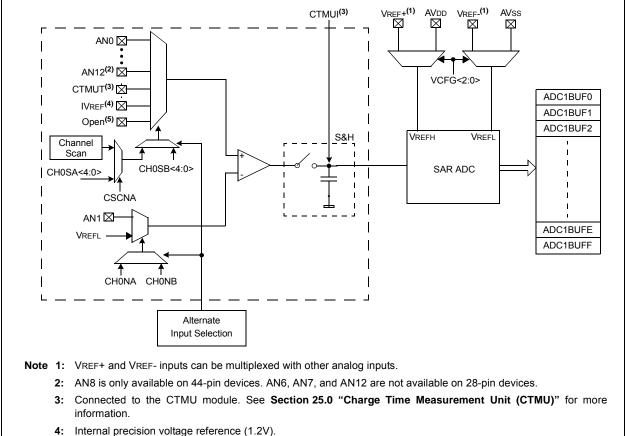
Legend:	HSC = Set by Hardware; Cleared by Software					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

22.0 **10-BIT ANALOG-TO-DIGITAL** CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).


The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- · Up to 1 Msps conversion speed

FIGURE 22-1:

- Up to 13 analog input pins
- External voltage reference input pins
- · One unipolar, differential Sample and Hold Amplifier (SHA)
- Automatic Channel Scan mode
- Selectable conversion trigger source
- · 16-word conversion result buffer
- Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 22-1. Figure 22-2 illustrates a block diagram of the ADC conversion clock period. The 10-bit ADC has up to 13 analog input pins, designated AN0-AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

5: This selection is only used with CTMU capacitive and time measurement.

ADC1 MODULE BLOCK DIAGRAM

22.1 **ADC Control Registers**

TABLE 22-1: ADC REGISTER MAP

$ \frac{5}{900} = \frac{1}{150} = 1$	ess										Bi	ts								
900 ADICONI(***) 31:16 -	Virtual Addr (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
150 ON - SIDL - - ONM SIRC20> CRRSM - AM SMM		AD1CON1(1)	31:16	_	—	_		_		_	—			—	—	—	—	_	—	0000
9010 ADICONUN 15.0 VCFG<2.0> OFFCAL — CSCNA — — BUFS — SMPI<3:0> BUFM A 9020 ADICON301 31:16 — DC ADC ADC AD	9000	ADICONIC	15:0	ON	_	SIDL	—	_	-	ORM<2:0>	>		SSRC<2:0>	>	CLRASAM	_	ASAM	SAMP	DONE	0000
Image: constraint of the	9010				—			—	—	_	—	—	_		—	—	—	_		0000
9020 ADICON3 15:0 ADRC - - - CHOSR ADCS<7:0> CHOSR ADCS<7:0> 9040 ADICHS(1) 11:6 - <td>0010</td> <td></td> <td></td> <td>,</td> <td>VCFG<2:0></td> <td></td> <td>OFFCAL</td> <td>—</td> <td>CSCNA</td> <td>—</td> <td>—</td> <td>BUFS</td> <td>—</td> <td></td> <td>SMPI</td> <td><3:0></td> <td></td> <td>BUFM</td> <td>ALTS</td> <td>0000</td>	0010			,	VCFG<2:0>		OFFCAL	—	CSCNA	—	—	BUFS	—		SMPI	<3:0>		BUFM	ALTS	0000
Image: Normal and the state of the	9020	AD1CON3 ⁽¹⁾		—	—	—		—	—		—	—	—	—		—	—	—	—	0000
9040 AD1CHSIVI 15.0 Image: Constraint of the	0020			-	—	—		Ś							ADCS	\$<7:0>				0000
Image: 100 mining of the second of	9040	AD1CHS ⁽¹⁾		CH0NB	_		—		CH0SE	3<3:0>		CH0NA	_	_			CH0S/	4<3:0>		0000
9050 AD1CSSL® 15.0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL8 CSSL7 CSSL6 CSSL6 CSSL4 CSSL3 CSSL2 CSSL1 CSSL1 CSSL3 CSSL3 CSSL3 CSSL3 CSSL3 CSSL1 CSSL1 CSSL1 CSSL1 CSSL3				_	_		—	—	—	_	—	—	_	_		—	_		—	0000
International conduction Status Cost 13 Cost 13 Cost 13 Cost 13 Cost 13 Cost 13 Cost 14	9050	AD1CSSL ⁽¹⁾			—	—	—	_	—		—	_			—	—			—	0000
9070 ADC1BUF0 15:0 ADC Result Word 0 (ADC1BUF0<31:0>) 9080 ADC1BUF2 31:16 ADC Result Word 1 (ADC1BUF1<31:0>) 9090 ADC1BUF2 31:16 ADC Result Word 2 (ADC1BUF2<31:0>) 9000 ADC1BUF3 31:16 ADC Result Word 2 (ADC1BUF3<31:0>) 9000 ADC1BUF4 31:16 ADC Result Word 3 (ADC1BUF3<31:0>) 9000 ADC1BUF4 31:16 ADC Result Word 4 (ADC1BUF4<31:0>) 9000 ADC1BUF5 31:16 ADC Result Word 5 (ADC1BUF4<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF4<31:0>) 9000 ADC1BUF5 31:16 ADC Result Word 6 (ADC1BUF4<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF6<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 7 (ADC1BUF6<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 8 (ADC1BUF6<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 8 (ADC1BUF7<31:0>) 9000 ADC1BUF6 31:16 ADC Result Word 9 (ADC1BUF9<31:0>) 9010 ADC1BUF6				CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
15:0 15:0 9080 ADC1BUF1 15:0 9090 ADC1BUF2 31:16 15:0 ADC Result Word 2 (ADC1BUF2<31:0>) 9040 ADC1BUF3 31:16 15:0 ADC Result Word 3 (ADC1BUF3<31:0>) 9080 ADC1BUF3 31:16 15:0 ADC Result Word 3 (ADC1BUF3<31:0>) 9080 ADC1BUF4 15:0 9080 ADC1BUF5 31:16 9080 ADC1BUF6 31:16 9080 ADC1BUF6 31:16 9080 ADC1BUF6 31:16 90800 ADC1BUF8 31:16 <td>9070</td> <td>ADC1BUF0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ADC Res</td> <td>sult Word 0</td> <td>(ADC1BUF</td> <td>0<31:0>)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>	9070	ADC1BUF0								ADC Res	sult Word 0	(ADC1BUF	0<31:0>)							0000
9080 ADC1BUF1 15:0 ADC Result Word 1 (ADC1BUF1 ADC Result Word 2 (ADC1BUF2 ADC 9090 ADC1BUF2 31:16 ADC Result Word 2 (ADC1BUF2 ADC ADC <td></td> <td>(</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>												(,							0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9080	ADC1BUF1								ADC Res	sult Word 1	(ADC1BUF	1<31:0>)							0000
9090 ADC18UF2 15.0 ADC Result Word 2 (ADC18UF2<31:0>) 90A0 ADC18UF3 31:16 15:0 ADC Result Word 3 (ADC18UF3<31:0>) 90B0 ADC18UF4 31:16 15:0 ADC Result Word 4 (ADC18UF4<31:0>) 90C0 ADC18UF3 31:16 15:0 ADC Result Word 5 (ADC18UF5<31:0>) 90C0 ADC18UF4 15:0 ADC Result Word 6 (ADC18UF5<31:0>) 90C0 ADC18UF5 31:16 15:0 ADC Result Word 6 (ADC18UF6<31:0>) 90E0 ADC18UF7 31:16 15:0 ADC Result Word 7 (ADC18UF7<31:0>) 90E0 ADC18UF7 31:16 15:0 ADC Result Word 8 (ADC18UF7<31:0>) 90F0 ADC18UF8 31:16 15:0 ADC Result Word 8 (ADC18UF8<31:0>) 90F0 ADC18UF8 31:16 15:0 ADC Result Word 8 (ADC18UF8<31:0>) 90F0 ADC18UF8 31:16 15:0 ADC Result Word 9 (ADC18UF9<31:0>) 90F0 ADC18UF9 31:16 15:0 ADC Result Word 9 (ADC18UF9<31:0>)												`	,							0000
$\frac{15:0}{900} = \frac{15:0}{15:0} = \frac{15:0}{15:0} = ADC \operatorname{Result Word 3 (ADC1BUF3<31:0)} ADC \operatorname{Result Word 4 (ADC1BUF4<31:0)} ADC \operatorname{Result Word 5 (ADC1BUF4<31:0)} ADC \operatorname{Result Word 5 (ADC1BUF5<31:0)} ADC \operatorname{Result Word 5 (ADC1BUF5<31:0)} ADC \operatorname{Result Word 6 (ADC1BUF5<31:0)} ADC \operatorname{Result Word 6 (ADC1BUF6<31:0)} ADC \operatorname{Result Word 6 (ADC1BUF6<31:0)} ADC \operatorname{Result Word 7 (ADC1BUF6<31:0)} ADC \operatorname{Result Word 7 (ADC1BUF7<31:0)} ADC \operatorname{Result Word 8 (ADC1BUF7<31:0)} ADC \operatorname{Result Word 8 (ADC1BUF8<31:0)} ADC \operatorname{Result Word 9 (ADC1BUF9<31:0)} ADC \operatorname{Result Word 9 (ADC1BUF9<31:0)}$	9090	ADC1BUF2								ADC Res	sult Word 2	(ADC1BUF	2<31:0>)							0000
90A0 ADC1BUF3 15:0 ADC Result Word 3 (ADC1BUF3<31:0>) 90B0 ADC1BUF4 31:16 ADC Result Word 4 (ADC1BUF4<31:0>) 90C0 ADC1BUF5 31:16 ADC Result Word 5 (ADC1BUF5<31:0>) 90C0 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF5<31:0>) 90D0 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90E0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 9 (ADC1BUF8<31:0>) 90F0 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF8<31:0>) 90F0 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF8<31:0>)													/							0000
$\frac{15:0}{90B0} \frac{ADC1BUF4}{ADC1BUF4} \frac{\frac{31:16}{15:0}}{\frac{15:0}{15:0}} ADC Result Word 4 (ADC1BUF4<31:0>)}$ $\frac{ADC1BUF5}{\frac{31:16}{15:0}} ADC Result Word 5 (ADC1BUF5<31:0>)}$ $\frac{ADC1BUF6}{\frac{15:0}{15:0}} \frac{\frac{31:16}{15:0}}{ADC Result Word 6 (ADC1BUF6<31:0>)}$ $\frac{ADC1BUF7}{\frac{31:16}{15:0}} \frac{\frac{31:16}{15:0}}{ADC Result Word 7 (ADC1BUF7<31:0>)}$ $\frac{ADC1BUF8}{\frac{31:16}{15:0}} \frac{\frac{31:16}{15:0}}{ADC Result Word 8 (ADC1BUF8<31:0>)}$ $\frac{ADC1BUF8}{\frac{31:16}{15:0}} \frac{\frac{31:16}{15:0}}{ADC Result Word 8 (ADC1BUF8<31:0>)}$	90A0	ADC1BUF3								ADC Res	sult Word 3	(ADC1BUF	3<31:0>)							0000
90B0 ADC1BUF4 15:0 ADC Result Word 4 (ADC1BUF4<31:0>) 90C0 ADC1BUF5 31:16 15:0 ADC Result Word 5 (ADC1BUF5<31:0>) 90D0 ADC1BUF6 31:16 15:0 ADC Result Word 6 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 15:0 ADC Result Word 7 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 15:0 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 90F0 ADC1BUF8 31:16 15:0 ADC Result Word 9 (ADC1BUF8<31:0>) 9100 ADC1BUF8 31:16 15:0 ADC Result Word 9 (ADC1BUF9<31:0>)													,							0000
$\frac{15:0}{90C0} = \frac{15:0}{4DC1BUF5} = \frac{31:16}{15:0} = ADC Result Word 5 (ADC1BUF5<31:0>)$ $\frac{90D0}{15:0} = ADC1BUF6 = \frac{31:16}{15:0} = ADC Result Word 6 (ADC1BUF6<31:0>)$ $\frac{90E0}{15:0} = ADC1BUF7 = \frac{31:16}{15:0} = ADC Result Word 7 (ADC1BUF7<31:0>)$ $\frac{90F0}{15:0} = ADC1BUF8 = \frac{31:16}{15:0} = ADC Result Word 8 (ADC1BUF8<31:0>)$ $\frac{90F0}{15:0} = ADC1BUF8 = \frac{31:16}{15:0} = ADC Result Word 9 (ADC1BUF8<31:0>)$	90B0	ADC1BUF4								ADC Res	sult Word 4	(ADC1BUF	4<31:0>)							0000
90C0 ADC1BUF5 15:0 ADC Result Word 5 (ADC1BUF5<31:0>) 90D0 ADC1BUF6 31:16 ADC Result Word 6 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90E0 ADC1BUF8 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 9 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)												`	,							0000
90D0 ADC1BUF6 31:16 15:0 ADC Result Word 6 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 15:0 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 90F0 ADC1BUF8 31:16 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 15:0 ADC Result Word 9 (ADC1BUF9<31:0>)	90C0	ADC1BUF5								ADC Res	sult Word 5	(ADC1BUF	5<31:0>)							0000
90D0 ADC 1BUF6 15:0 ADC Result Word 6 (ADC1BUF6<31:0>) 90E0 ADC1BUF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)												,	,							0000
15:0 ADC 18UF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90E0 ADC1BUF7 31:16 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)	90D0	ADC1BUF6								ADC Res	sult Word 6	(ADC1BUF	6<31:0>)							0000
90E0 ADC1BUF7 15:0 ADC Result Word 7 (ADC1BUF7<31:0>) 90F0 ADC1BUF8 31:16 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)												,	,							0000
90F0 ADC1BUF8 31:16 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 15:0 ADC Result Word 9 (ADC1BUF9<31:0>)	90E0	ADC1BUF7								ADC Res	sult Word 7	(ADC1BUF	7<31:0>)							0000
90F0 ADC1BUF8 15:0 ADC Result Word 8 (ADC1BUF8<31:0>) 9100 ADC1BUF9 31:16 ADC Result Word 9 (ADC1BUF9<31:0>)													,							0000
9100 ADC1BUF9 31:16 15:0 ADC Result Word 9 (ADC1BUF9<31:0>)	90F0	ADC1BUF8								ADC Res	sult Word 8	(ADC1BUF	8<31:0>)							0000
Image: 9100 ADC 18UF9 15:0 ADC Result Word 9 (ADC18UF9<31:0>) 31:16					0000															
	9100	ADC1BUF9								ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000
											-	-	,							0000
	9110	ADC1BUFA								ADC Res	sult Word A	(ADC1BUF	A<31:0>)							0000
Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.												-	,							0000

This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for details. Note 1:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	_		—	_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	_	—	—	—	_	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	

REGISTER 22-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CSSL<15:0>: ADC Input Pin Scan Selection bits^(1,2)

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** CSSL = ANx, where 'x' = 0-12; CSSL13 selects CTMU input for scan; CSSL14 selects IVREF for scan; CSSL15 selects Vss for scan.
 - 2: On devices with less than 13 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

26.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power- Saving Features" (DS60001130), which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microchip PIC32 web site
	(www.microchip.com/pic32).
	(

This section describes power-saving features for the PIC32MX1XX/2XX 28/36/44-pin Family. The PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

26.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers
- LPRC Run mode: the CPU is clocked from the LPRC clock source
- Sosc Run mode: the CPU is clocked from the Sosc clock source

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

26.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as follows:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

26.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

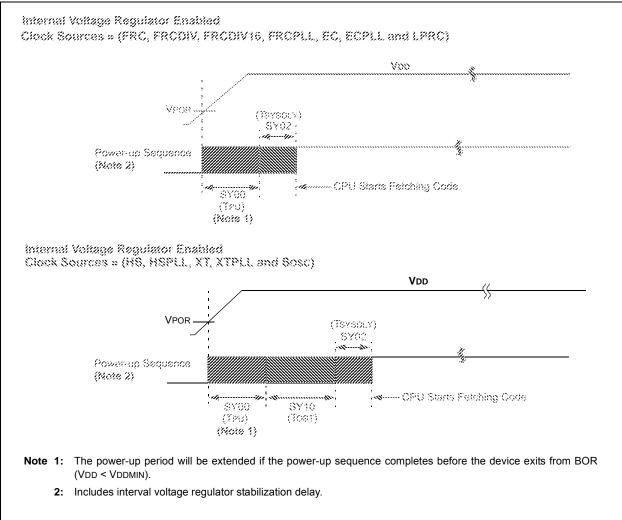
26.3.1 SLEEP MODE

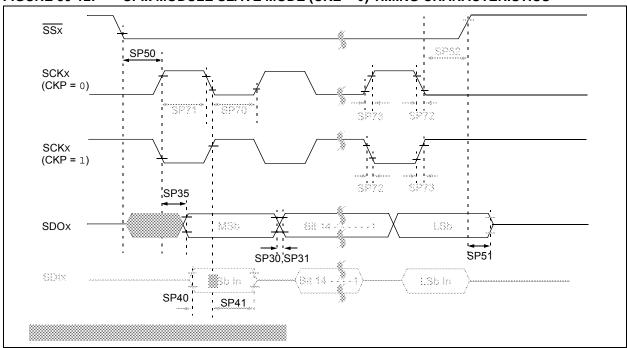
Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See Section 26.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

TABLE 30-0.									
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Parameter No.	Typical ⁽²⁾	Max.	Units	Conditions					
Idle Current (IIDLE): Core Off, Clock on Base Current (Notes 1, 4)									
DC30a	1	1.5	mA	4 MHz (Note 3)					
DC31a	2	3	mA	10 MHz					
DC32a	4	6	mA		20 MHz (Note 3)				
DC33a	5.5	8	mA		30 MHz (Note 3)				
DC34a	7.5	11	mA	40 MHz					
DC37a	100	_	μA	-40°C		LPRC (31 kHz)			
DC37b	250	_	μA	+25°C	3.3V	(Note 3)			
DC37c	380		μA	+85°C	1				


TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

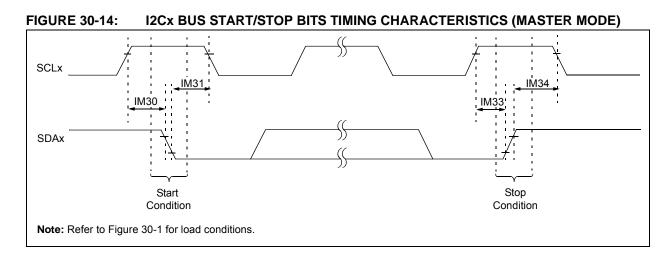

Note 1: The test conditions for IIDLE current measurements are as follows:

Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 OSC2/CLKO is configured as an I/O input pin

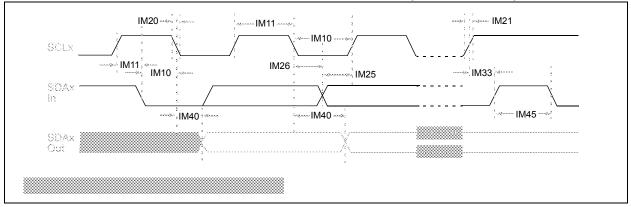
- UCD DLL as sillator is dischard if the LLCD readule is implemented
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core Halted), and SRAM data memory Wait states = 1 $\,$
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- 4: IIDLE electrical characteristics for devices with 256 KB Flash are only provided as Preliminary information.

FIGURE 30-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 30-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

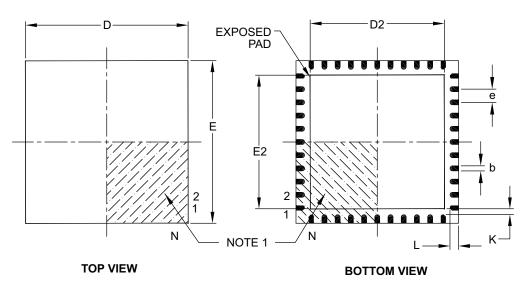

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	—	_	ns	—	
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	—		ns	—	
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See parameter DO32	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
TscL2DoV	SCKx Edge	_	—	20	ns	VDD < 2.7V		
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}}\downarrow$ to SCKx \uparrow or SCKx Input	175			ns	—	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

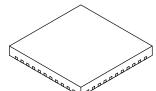

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 50 ns.

4: Assumes 50 pF load on all SPIx pins.






NOTES:

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B