

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	19
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f256bt-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

		Pin Nu	mber ⁽¹⁾						
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description		
PMA0	7	10	8	3	I/O	TTL/ST	Parallel Master Port Address bit 0 input (Buffered Slave modes) and output (Master modes)		
PMA1	9	12	10	2	I/O	TTL/ST	Parallel Master Port Address bit 1 input (Buffered Slave modes) and output (Master modes)		
PMA2		_	_	27	0	_	Parallel Master Port address		
PMA3				38	0	—	(Demultiplexed Master modes)		
PMA4				37	0	—			
PMA5		_	_	4	0	_			
PMA6		_	_	5	0	_			
PMA7				13	0	—			
PMA8		_	_	32	0	_			
PMA9		_	_	35	0	_			
PMA10		_	_	12	0	_			
PMCS1	23	26	29	15	0	_	Parallel Master Port Chip Select 1 strobe		
	20 ⁽²⁾	23 ⁽²⁾	26 ⁽²⁾	10 ⁽²⁾	1/0	TTI /CT	Parallel Master Port data (Demultiplexed		
	1 ⁽³⁾	4 ⁽³⁾	35 ⁽³⁾	21 ⁽³⁾	1/0	111/31	Master mode) or address/data		
	19 (2)	22 ⁽²⁾	25 ⁽²⁾	9(2)	1/0	TTI /CT	(Multiplexed Master modes)		
	2 ⁽³⁾	5 ⁽³⁾	36 ⁽³⁾	22 ⁽³⁾	1/0	111/31			
	18 ⁽²⁾	21 ⁽²⁾	24 ⁽²⁾	8 ⁽²⁾	1/0	TTI /ST			
	ვ(3)	6 ⁽³⁾	1 ⁽³⁾	23 ⁽³⁾	1/0	116/01			
PMD3	15	18	19	1	I/O	TTL/ST			
PMD4	14	17	18	44	I/O	TTL/ST			
PMD5	13	16	17	43	I/O	TTL/ST			
PMD6	12 ⁽²⁾	15 ⁽²⁾	16 ⁽²⁾	42 ⁽²⁾	1/0	TTI /CT	1		
	28 ⁽³⁾	3(3)	34 (3)	20 ⁽³⁾	1/0	111/31			
PMD7	11(2)	14 ⁽²⁾	15 (2)	41 ⁽²⁾	1/0	TTI /ST			
	27 ⁽³⁾	2 ⁽³⁾	33 (3)	19 ⁽³⁾	1/0	112/01			
PMRD	21	24	27	11	0	—	Parallel Master Port read strobe		
	22 ⁽²⁾	25 ⁽²⁾	28 ⁽²⁾	14 ⁽²⁾	0		Parallel Master Port write strope		
	4 ⁽³⁾	7 ⁽³⁾	2 ⁽³⁾	24 ⁽³⁾	Ŭ		T arallel master Fort while strobe		
VBUS	12 ⁽³⁾	15 ⁽³⁾	16 (3)	42 ⁽³⁾	Ι	Analog	USB bus power monitor		
VUSB3V3	20 ⁽³⁾	23 ⁽³⁾	26 ⁽³⁾	10 ⁽³⁾	Р	_	USB internal transceiver supply. This pin must be connected to VDD.		
VBUSON	22 ⁽³⁾	25 ⁽³⁾	28 ⁽³⁾	14 ⁽³⁾	0		USB Host and OTG bus power control output		
D+	18 ⁽³⁾	21 ⁽³⁾	24 ⁽³⁾	8 ⁽³⁾	I/O	Analog	USB D+		
D-	19 ⁽³⁾	22 ⁽³⁾	25 ⁽³⁾	9(3)	I/O	Analog	USB D-		
Legend:	CMOS = C	MOS compa	atible input	or output		Analog =	Analog input P = Power		
	ST = Schmi	tt Trigger in	put with CN	NOS levels		O = Output I = Input			
	TTL = TTL input buffer						eripheral Pin Select — = N/A		

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

		Pin Nu	mber ⁽¹⁾								
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	44-pin 36-pin QFN/ VTLA TQFP/ VTLA		Pin Type	Buffer Type	Description				
USBID	11 ⁽³⁾	14(3)	15 ⁽³⁾	41 ⁽³⁾	I	ST	USB OTG ID detect				
CTED1	27	2	33	19	I	ST	CTMU External Edge Input				
CTED2	28	3	34	20	I	ST					
CTED3	13	16	17	43	I	ST					
CTED4	15	18	19	1	I	ST					
CTED5	22	25	28	14	I	ST					
CTED6	23	26	29	15	I	ST					
CTED7			20	5	I	ST					
CTED8				13	I	ST	7				
CTED9	9	12	10	34	I	ST					
CTED10	14	17	18	44	I	ST					
CTED11	18	21	24	8	I	ST	7				
CTED12	2	5	36	22	I	ST					
CTED13	3	6	1	23	I	ST	7				
CTPLS	21	24	27	11	0	—	CTMU Pulse Output				
PGED1	1	4	35	21	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1				
PGEC1	2	5	36	22	I	ST	Clock input pin for Programming/Debugging Communication Channel 1				
PGED2	18	21	24	8	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2				
PGEC2	19	22	25	9	I	ST	Clock input pin for Programming/Debugging Communication Channel 2				
PGED3	11 ⁽²⁾ 27 ⁽³⁾	14 ⁽²⁾ 2 ⁽³⁾	15 ⁽²⁾ 33 ⁽³⁾	41 ⁽²⁾ 19 ⁽³⁾	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 3				
PGEC3	12 ⁽²⁾ 28 ⁽³⁾	15 ⁽²⁾ 3 ⁽³⁾	16 ⁽²⁾ 34 ⁽³⁾	42 ⁽²⁾ 20 ⁽³⁾	- 1	ST	Clock input pin for Programming/ Debugging Communication Channel 3				
PGED4	—	—	3	12	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 4				
PGEC4	—	—	4	13	I	ST	Clock input pin for Programming/ Debugging Communication Channel 4				
Legend:	CMOS = CM	MOS compa	atible input	or output	•	Analog =	Analog input P = Power				
:	ST = Schmi	tt Trigger in	put with CN	NOS levels		O = Outp	but I=Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer PPS = Peripheral Pin Select

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

— = N/A

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

7.1 Interrupt Control Registers

TABLE 7-2: INTERRUPT REGISTER MAP

ess		0		Bits															
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1000		31:16			_	—		—	—			_	_	_	—	_	_	_	0000
1000	INTCOM	15:0	-	-	_	MVEC	—		TPC<2:0>			—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
1010								0000											
1010	INTOTAL	15:0		—		—	—		SRIPL<2:0>		—	—			VEC<5:0)>			0000
1020	IPTMR	31:16		IPTMP<31:0>															
1020		15:0	0						-	-	-	-	0000						
1030	IES0	31:16	FCEIF	RTCCIF	FSCMIF	AD1IF	OC5IF	IC5IF	IC5EIF	T5IF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
1030	11 00	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT1IF	OC1IF	IC1IF	IC1EIF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000
1040	IES1	31:16	DMA3IF	DMA2IF	DMA1IF	DMA0IF	CTMUIF	I2C2MIF	I2C2SIF	I2C2BIF	U2TXIF	U2RXIF	U2EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	PMPEIF	PMPIF	0000
1040	11.51	15:0	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	SPI1TXIF	SPI1RXIF	SPI1EIF	USBIF ⁽²⁾	CMP3IF	CMP2IF	CMP1IF	0000
1060	IECO	31:16	FCEIE	RTCCIE	FSCMIE	AD1IE	OC5IE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
1000	ILCO	15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INT0IE	CS1IE	CS0IE	CTIE	0000
1070	IEC1	31:16	DMA3IE	DMA2IE	DMA1IE	DMA0IE	CTMUIE	I2C2MIE	I2C2SIE	I2C2BIE	U2TXIE	U2RXIE	U2EIE	SPI2TXIE	SPI2RXIE	SPI2EIE	PMPEIE	PMPIE	0000
1070	ILCI	15:0	CNCIE	CNBIE	CNAIE	I2C1MIE	I2C1SIE	I2C1BIE	U1TXIE	U1RXIE	U1EIE	SPI1TXIE	SPI1RXIE	SPI1EIE	USBIE ⁽²⁾	CMP3IE	CMP2IE	CMP1IE	0000
1000		31:16	_	—	_		INT0IP<2:0>		INTOIS	<1:0>	_	_	_	C	S1IP<2:0>		CS1IS	S<1:0>	0000
1090	IFCU	15:0	-	—	_		CS0IP<2:0>		CS0IS	<1:0>	-	_	_	(CTIP<2:0>		CTIS	<1:0>	0000
1040	IDC1	31:16		—	_		INT1IP<2:0>		INT1IS	<1:0>		_	—	C	C1IP<2:0>		OC1IS	S<1:0>	0000
IUAU	IFCT	15:0		_	_		IC1IP<2:0>		IC1IS-	<1:0>		-	—	-	T1IP<2:0>		T1IS	<1:0>	0000
1000		31:16	_	_	_		INT2IP<2:0>		INT2IS	<1:0>	_	_	_	C	C2IP<2:0>		OC2IS	6<1:0>	0000
1080	IPC2	15:0		_			IC2IP<2:0>		IC2IS-	<1:0>	-	—	_	-	T2IP<2:0>		T2IS	<1:0>	0000
1000	IDO2	31:16	_	—	_		INT3IP<2:0>		INT3IS	<1:0>	_	—	_	C	C3IP<2:0>		OC3IS	6<1:0>	0000
1000	IPC3	15:0	_	—	_		IC3IP<2:0>		IC3IS-	<1:0>	_	—	_	-	T3IP<2:0>		T3IS-	<1:0>	0000
1000		31:16	_	—	_		INT4IP<2:0>		INT4IS	<1:0>	_	—	_	C	C4IP<2:0>		OC4IS	6<1:0>	0000
1000	IPC4	15:0		_			IC4IP<2:0>		IC4IS•	<1:0>	-	—	_	-	T4IP<2:0>		T4IS	<1:0>	0000
4050	IDOS	31:16	_	_	_		AD1IP<2:0>		AD1IS	<1:0>	_	_	_	C	C5IP<2:0>		OC5IS	6<1:0>	0000
IUEU	IPC5	15:0	_	_	_		IC5IP<2:0>		IC5IS-	<1:0>	_	_	_	-	T5IP<2:0>		T5IS	<1:0>	0000
1050	IDCC	31:16	—	_	—	(CMP1IP<2:0>	>	CMP1IS	S<1:0>	—	—	_	F	CEIP<2:0>		FCEIS	6<1:0>	0000
10-0	IPCO	15:0	_	_	—	F	RTCCIP<2:0>	>	RTCCIS	S<1:0>	_	_		FS	CMIP<2:0>	>	FSCMI	S<1:0>	0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/36/44-pin
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 6. "Oscillator
	Configuration" (DS60001112), which is
	available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

bit 3	CF: Clock Fail Detect bit
	1 = FSCM has detected a clock failure
	0 = No clock failure has been detected
bit 2	UFRCEN: USB FRC Clock Enable bit ⁽¹⁾
	 1 = Enable the FRC as the clock source for the USB clock source 0 = Use the Primary Oscillator or USB PLL as the USB clock source
bit 1	SOSCEN: Secondary Oscillator (Sosc) Enable bit
	1 = Enable the Secondary Oscillator
	0 = Disable the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	This bit is only available on PIC32MX2XX devices.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

TABLE 9-3: DMA CHANNELS 0-3 REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
3170	DCH1SSIZ	31:16	_	—		_	_	_	—	—		_	—	_	_	_	_	—	0000
0170	DOITIOOIZ	15:0		i		i			i	CHSSIZ	2<15:0>		t					i	0000
3180	DCH1DSIZ	31:16		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0.00	50115012	15:0		CHDSIZ<15:0> 0000															
3190	DCH1SPTR	31:16				_		_		—	—	—	—	—	_	—	—		0000
		15:0								CHSPTI	≺<15:0>								0000
31A0	DCH1DPTR	31:16				_		_				_	_	_	_	_	_		0000
		10.0									~~15.0>								0000
31B0	DCH1CSIZ	15.0				_	_			CHCSIZ	 7<15:0>		_						0000
		31:16	_		_	_	_	_		_		_	_	_	_	_	_		0000
31C0	DCH1CPTR	15:0								CHCPTI	R<15:0>								0000
	DOLUDAT	31:16	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
31D0	DCH1DAT	15:0	_	_	_	_	_	_	_	_				CHPDA	T<7:0>				0000
2150		31:16	_	_	_	—	_	_	—	_	_	_	_	_	_	_	_	_	0000
SIEU	DCH2CON	15:0	CHBUSY	—	—	—	—	-	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	-	CHEDET	CHPR	l<1:0>	0000
31E0	DCH2ECON	31:16	—	_	—	—	—	—	_	—			1	CHAIR	Q<7:0>				OOFF
011 0	DONZEOON	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—		FF00
3200	DCH2INT	31:16				_	_		—		CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
		15:0	_		—	—	—	—		—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3210	DCH2SSA	31:16								CHSSA	<31:0>	>						0000	
		15:0																	0000
3220	DCH2DSA	15.0								CHDSA	<31:0>								0000
		31.16	_			_	_	_		_		_		_	_	_	_		0000
3230	DCH2SSIZ	15.0								CHSSIZ	/<15:0>								0000
		31:16	_	_		_	_	_		_	_	—	_	_	_	_	_	_	0000
3240	DCH2DSIZ	15:0								CHDSIZ	Z<15:0>								0000
0050	DOLIGODITO	31:16	_	_	_	—	_	_		_	_	_	_	_	_	_	_		0000
3250	DCH2SPTR	15:0								CHSPTI	R<15:0>								0000
3260		31:16	—	—	—	—	—	-	—	_	_		_	_	-	-		_	0000
5200		15:0								CHDPT	R<15:0>								0000
3270	DCH2CSI7	31:16		—	—	—	_	—		—	—	—	—	—	—	—	—		0000
00	0210 00120012	15:0								CHCSIZ	Z<15:0>								0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	—	_	_	—
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	_	—	_	—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

REGISTER 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24	Unimplemented: Read as '0'
bit 23	CHSDIE: Channel Source Done Interrupt Enable bit
	1 = Interrupt is enabled
h:+ 00	0 = Interrupt is disabled
DIT 22	
	0 = Interrupt is disabled
bit 21	CHDDIE: Channel Destination Done Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 20	CHDHIE: Channel Destination Half Full Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 19	CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled 0 = Interrupt is disabled
bit 18	CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
	1 = Interrupt is enabled
	0 = Interrupt is disabled
bit 17	CHTAIE: Channel Transfer Abort Interrupt Enable bit
	1 = Interrupt is enabled
bit 16	CHERIE: Channel Address Error Interrupt Enable bit
	1 = Interrupt is enabled $0 = Interrupt is disabled$
bit 15-8	Unimplemented: Read as '0'
bit 7	CHSDIF: Channel Source Done Interrupt Flag bit
	1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
	0 = No interrupt is pending
bit 6	CHSHIF: Channel Source Half Empty Interrupt Flag bit
	1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
	0 = No interrupt is pending
bit 5	CHDDIF: Channel Destination Done Interrupt Flag bit
	 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ) 0 = No interrupt is pending
© 2011-201	16 Microchip Technology Inc. D

DS60001168J-page 95

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	_	_		_	—	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	-	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 10-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPP	ULUP	: D+ F	Pull-Up I	Enable	bit	

1 = D+ data line pull-up resistor is enabled
 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- It 6 DIMPOLOP: D- Pull-Op Enable bit
 - 1 = D- data line pull-up resistor is enabled
 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D + data line pull-down resistor is disabled
- bit 4 **DMPULDWN:** D- Pull-Down Enable bit
 - 1 = D- data line pull-down resistor is enabled
 - 0 = D- data line pull-down resistor is disabled
- bit 3 VBUSON: VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control
- bit 1 VBUSCHG: VBUS Charge Enable bit
 - 1 = VBUS line is charged through a pull-up resistor
 - 0 = VBUS line is not charged through a resistor
- bit 0 VBUSDIS: VBUS Discharge Enable bit
 - 1 = VBUS line is discharged through a pull-down resistor
 - 0 = VBUS line is not discharged through a resistor

REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 3 Unimplemented: Read as '0'
 bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.
 bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	—	—	—	—	—	—	CAL<9):8>
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10				CAL<	:7:0>			
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	—	SIDL	_	—	—	—	—
7.0	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0
7:0	RTSECSEL ⁽³⁾	RTCCLKON	—	—	RTCWREN ⁽⁴⁾	RTCSYNC	HALFSEC ⁽⁵⁾	RTCOE

REGISTER 21-1: RTCCON: RTC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value 0111111111 = Maximum positive adjustment, adds 511 RTC clock pulses every one minute 000000001 = Minimum positive adjustment, adds 1 RTC clock pulse every one minute 000000000 = No adjustment 1111111111 = Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute 100000000 = Maximum negative adjustment, subtracts 512 clock pulses every one minute ON: RTCC On bit^(1,2) bit 15 1 = RTCC module is enabled 0 = RTCC module is disabled bit 14 Unimplemented: Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Disables the PBCLK to the RTCC when the device enters Idle mode 0 = Continue normal operation when the device enters Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 RTSECSEL: RTCC Seconds Clock Output Select bit⁽³⁾ 1 = RTCC Seconds Clock is selected for the RTCC pin 0 = RTCC Alarm Pulse is selected for the RTCC pin bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running **Note 1:** The ON bit is only writable when RTCWREN = 1. 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. 3: Requires RTCOE = 1 (RTCCON<0>) for the output to be active. 4: The RTCWREN bit can be set only when the write sequence is enabled. 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

© 2011-2016 Microchip Technology Inc.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

- Up to 13 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- · Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 25-1.

© 2011-2016 Microchip Technology Inc.

TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array} $				
Param. No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions			Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of the power pins.
DI60b	Іісн	Input High Injection Current	0	_	+5(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins, and the SOSCI, SOSCO, OSC1, D+, and D- pins.
DI60c	∑lict	Total Input Injection Current (sum of all I/O and Control pins)	-20 (6)	_	+20(6)	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: VIL source < (VSS - 0.3). Characterized but not tested.

3: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

4: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS - 0.3)).

6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 3, IICH = ((IICH source - (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss - 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

30.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX1XX/2XX 28/36/44-pin Family AC characteristics and timing parameters.

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DO56	Сю	All I/O pins and OSC2		_	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C mode

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-2: EXTERNAL CLOCK TIMING

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

FIGURE 30-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

TABLE 31-8:SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions
MSP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2		I	ns	—
MSP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2			ns	—
MSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 2)	5		25	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

TABLE 31-9: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time (Note 1,2)	Tsck/2	_	—	ns	_
SP71	TscH	SCKx Input High Time (Note 1,2)	Tsck/2		—	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: The minimum clock period for SCKx is 40 ns.

33.1 Package Marking Information (Continued)

44-Lead VTLA

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((a))
		can be found on the outer packaging for this package.
Note:	If the full N line, thus	Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	N	IILLIMETER	S
Dimensior	Limits	MIN	NOM	MAX
Number of Pins	Ν		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

Revision G (April 2015)

This revision includes the addition of the following devices:

- PIC32MX130F256B
 PIC32MX230F256B
- PIC32MX130F256D PIC32MX230F256D

The title of the document was updated to avoid confusion with the PIC32MX1XX/2XX/5XX 64/100-pin Family data sheet.

TABLE A-6: MAJOR SECTION UPDATES

All peripheral SFR maps have been relocated from the Memory chapter to their respective peripheral chapters.

In addition, this revision includes the following major changes as described in Table A-6, as well as minor updates to text and formatting, which were incorporated throughout the document.

Section	Update Description
32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog	Added new devices to the family features (see Table 1 and Table 2). Updated pin diagrams to include new devices (see Pin Diagrams).
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Updated these sections: 2.2 "Decoupling Capacitors", 2.3 "Capacitor on Internal Voltage Regulator (VCAP)", 2.4 "Master Clear (MCLR) Pin", 2.8.1 "Crystal Oscillator Design Consideration"
4.0 "Memory Organization"	Added Memory Map for new devices (see Figure 4-6).
14.0 "Watchdog Timer (WDT)"	New chapter created from content previously located in the Special Features chapter.
30.0 "Electrical Characteristics"	Removed parameter D312 (TSET) from the Comparator Specifications (see Table 30-12).
	Added the Comparator Voltage Reference Specifications (see Table 30-13).
	Updated Table 30-12.

Revision H (July 2015)

This revision includes the following major changes as described in Table A-7, as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE A-7: MAJOR SECTION UPDATES

Section	Update Description
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Section 2.9 "Sosc Design Recommendation" was removed.
8.0 "Oscillator Configuration"	The Primary Oscillator (Posc) logic in the Oscillator diagram was updated (see Figure 8-1).
30.0 "Electrical Characteristics"	The Power-Down Current (IPD) DC Characteristics parameter DC40k was updated (see Table 30-7).
	Table 30-9: "DC Characteristics: I/O Pin Input Injection current Specifications" was added.