

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                    |
| Core Size                  | 32-Bit Single-Core                                                              |
| Speed                      | 40MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB OTG                        |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                    |
| Number of I/O              | 19                                                                              |
| Program Memory Size        | 256КВ (256К х 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | •                                                                               |
| RAM Size                   | 64K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                     |
| Data Converters            | A/D 9x10b                                                                       |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 28-VQFN Exposed Pad                                                             |
| Supplier Device Package    | 28-QFN (6x6)                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f256bt-v-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 8: **PIN NAMES FOR 36-PIN USB DEVICES**

# 36-PIN VTLA (TOP VIEW)<sup>(1,2,3,5)</sup>

PIC32MX210F016C

|       | PIC32MX220F032C<br>PIC32MX230F064C<br>PIC32MX250F128C |       |                                                  |
|-------|-------------------------------------------------------|-------|--------------------------------------------------|
|       |                                                       |       | 36                                               |
|       |                                                       |       | 1                                                |
| Pin # | Full Pin Name                                         | Pin # | Full Pin Name                                    |
| 1     | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2             | 19    | TDO/RPB9/SDA1/CTED4/PMD3/RB9                     |
| 2     | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3               | 20    | RPC9/CTED7/RC9                                   |
| 3     | PGED4 <sup>(4)</sup> /AN6/RPC0/RC0                    | 21    | Vss                                              |
| 4     | PGEC4 <sup>(4)</sup> /AN7/RPC1/RC1                    | 22    | VCAP                                             |
| 5     | VDD                                                   | 23    | Vdd                                              |
| 6     | Vss                                                   | 24    | PGED2/RPB10/D+/CTED11/RB10                       |
| 7     | OSC1/CLKI/RPA2/RA2                                    | 25    | PGEC2/RPB11/D-/RB11                              |
| 8     | OSC2/CLKO/RPA3/PMA0/RA3                               | 26    | VUSB3V3                                          |
| 9     | SOSCI/RPB4/RB4                                        | 27    | AN11/RPB13/CTPLS/PMRD/RB13                       |
| 10    | SOSCO/RPA4/T1CK/CTED9/PMA1/RA4                        | 28    | CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14 |
| 11    | AN12/RPC3/RC3                                         | 29    | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15            |
| 12    | Vss                                                   | 30    | AVss                                             |
| 13    | DD                                                    | 31    | AVdd                                             |
| 14    | DD                                                    | 32    | MCLR                                             |
| 15    | TMS/RPB5/USBID/RB5                                    | 33    | PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 |
| 16    | VBUS                                                  | 34    | PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1       |
| 17    | TDI/RPB7/CTED3/PMD5/INT0/RB7                          | 35    | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0        |
| 18    | TCK/RPB8/SCL1/CTED10/PMD4/RB8                         | 36    | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1       |
|       |                                                       | L     |                                                  |

Note The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin 1: Select" for restrictions.

Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information. 2:

The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally. 3:

4: This pin function is not available on PIC32MX210F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

#### TABLE 12: PIN NAMES FOR 44-PIN USB DEVICES

# 44-PIN TQFP (TOP VIEW)<sup>(1,2,3,5)</sup>

PIC32MX210F016D PIC32MX220F032D PIC32MX230F064D PIC32MX230F256D PIC32MX250F128D PIC32MX270F256D

44

1

| Pin # | Full Pin Name                                    | Pin # | Full Pin Name                             |
|-------|--------------------------------------------------|-------|-------------------------------------------|
| 1     | RPB9/SDA1/CTED4/PMD3/RB9                         | 23    | AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2 |
| 2     | RPC6/PMA1/RC6                                    | 24    | AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3   |
| 3     | RPC7/PMA0/RC7                                    | 25    | AN6/RPC0/RC0                              |
| 4     | RPC8/PMA5/RC8                                    | 26    | AN7/RPC1/RC1                              |
| 5     | RPC9/CTED7/PMA6/RC9                              | 27    | AN8/RPC2/PMA2/RC2                         |
| 6     | Vss                                              | 28    | VDD                                       |
| 7     | VCAP                                             | 29    | Vss                                       |
| 8     | PGED2/RPB10/D+/CTED11/RB10                       | 30    | OSC1/CLKI/RPA2/RA2                        |
| 9     | PGEC2/RPB11/D-/RB11                              | 31    | OSC2/CLKO/RPA3/RA3                        |
| 10    | VUSB3V3                                          | 32    | TDO/RPA8/PMA8/RA8                         |
| 11    | AN11/RPB13/CTPLS/PMRD/RB13                       | 33    | SOSCI/RPB4/RB4                            |
| 12    | PGED4 <sup>(4)</sup> /TMS/PMA10/RA10             | 34    | SOSCO/RPA4/T1CK/CTED9/RA4                 |
| 13    | PGEC4 <sup>(4)</sup> /TCK/CTED8/PMA7/RA7         | 35    | TDI/RPA9/PMA9/RA9                         |
| 14    | CVREFOUT/AN10/C3INB/RPB14/VBUSON/SCK1/CTED5/RB14 | 36    | AN12/RPC3/RC3                             |
| 15    | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15            | 37    | RPC4/PMA4/RC4                             |
| 16    | AVss                                             | 38    | RPC5/PMA3/RC5                             |
| 17    | AVDD                                             | 39    | Vss                                       |
| 18    | MCLR                                             | 40    | VDD                                       |
| 19    | PGED3/VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/PMD7/RA0 | 41    | RPB5/USBID/RB5                            |
| 20    | PGEC3/VREF-/CVREF-/AN1/RPA1/CTED2/PMD6/RA1       | 42    | VBUS                                      |
| 21    | PGED1/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0        | 43    | RPB7/CTED3/PMD5/INT0/RB7                  |
| 22    | PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/PMD1/RB1       | 44    | RPB8/SCL1/CTED10/PMD4/RB8                 |

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX210F016D and PIC32MX220F032D devices.

5: Shaded pins are 5V tolerant.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

| Exception | Description                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Reset     | Assertion MCLR or a Power-on Reset (POR).                                                                                               |
| DSS       | EJTAG debug single step.                                                                                                                |
| DINT      | EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register. |
| NMI       | Assertion of NMI signal.                                                                                                                |
| Interrupt | Assertion of unmasked hardware or software interrupt signal.                                                                            |
| DIB       | EJTAG debug hardware instruction break matched.                                                                                         |
| AdEL      | Fetch address alignment error.<br>Fetch reference to protected address.                                                                 |
| IBE       | Instruction fetch bus error.                                                                                                            |
| DBp       | EJTAG breakpoint (execution of SDBBP instruction).                                                                                      |
| Sys       | Execution of SYSCALL instruction.                                                                                                       |
| Вр        | Execution of BREAK instruction.                                                                                                         |
| RI        | Execution of a reserved instruction.                                                                                                    |
| CpU       | Execution of a coprocessor instruction for a coprocessor that is not enabled.                                                           |
| CEU       | Execution of a CorExtend instruction when CorExtend is not enabled.                                                                     |
| Ov        | Execution of an arithmetic instruction that overflowed.                                                                                 |
| Tr        | Execution of a trap (when trap condition is true).                                                                                      |
| DDBL/DDBS | EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).                                           |
| AdEL      | Load address alignment error.<br>Load reference to protected address.                                                                   |
| AdES      | Store address alignment error.<br>Store to protected address.                                                                           |
| DBE       | Load or store bus error.                                                                                                                |
| DDBL      | EJTAG data hardware breakpoint matched in load data compare.                                                                            |

# TABLE 3-3: MIPS32<sup>®</sup> M4K<sup>®</sup> PROCESSOR CORE EXCEPTION TYPES

# 3.3 Power Management

The MIPS M4K processor core offers many power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods.

# 3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 26.0 "Power-Saving Features".

# 3.4 EJTAG Debug Support

The MIPS M4K processor core provides an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |
| 31:24        | —                 | —                 | _                 | —                 | —                 |                   | —                | —                |  |  |  |  |  |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |  |  |
| 23:10        | —                 | —                 | _                 | —                 | —                 | —                 | —                | —                |  |  |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R-0              | R-0              |  |  |  |  |  |
| 15:8         |                   | BMXDUPBA<15:8>    |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 7:0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |  |  |  |  |  |
|              |                   |                   |                   | BMXDU             | PBA<7:0>          |                   |                  |                  |  |  |  |  |  |

# REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

# Legend:

| Logona.           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 **BMXDUPBA<9:0>:** Read-Only bits This value is always '0', which forces 1 KB increments

**Note 1:** At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

# 5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/36/44-pin Family devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming™ (ICSP™)

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: The Flash page size on PIC32MX-1XX/2XX 28/36/44-pin Family devices is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1   | Bit<br>24/16/8/0   |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|
| 24.24        | U-0                | U-0                |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                  | —                  |
|              | U-0                | U-0                |
| 23:10        | —                 | —                 | —                 | —                 | —                 | —                 | —                  | —                  |
| 15.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | R/W-0, HS          | R/W-0              |
| 10.0         | —                 | —                 | —                 | —                 | —                 | —                 | CMR                | VREGS              |
| 7:0          | R/W-0, HS         | R/W-0, HS         | U-0               | R/W-0, HS         | R/W-0, HS         | R/W-0, HS         | R/W-1, HS          | R/W-1, HS          |
|              | EXTR              | SWR               | _                 | WDTO              | SLEEP             | IDLE              | BOR <sup>(1)</sup> | POR <sup>(1)</sup> |

# REGISTER 6-1: RCON: RESET CONTROL REGISTER

| Legend:           | HS = Set by hardware |                           |                    |
|-------------------|----------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit     | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set     | '0' = Bit is cleared      | x = Bit is unknown |

### bit 31-10 Unimplemented: Read as '0'

| bit 9 | CMR: Configuration Mismatch Reset Flag bit             |
|-------|--------------------------------------------------------|
|       | 1 = Configuration mismatch Reset has occurred          |
|       | 0 = Configuration mismatch Reset has not occurred      |
| bit 8 | VREGS: Voltage Regulator Standby Enable bit            |
|       | 1 = Regulator is enabled and is on during Sleep mode   |
|       | 0 = Regulator is disabled and is off during Sleep mode |
| bit 7 | EXTR: External Reset (MCLR) Pin Flag bit               |
|       | 1 = Master Clear (pin) Reset has occurred              |
|       | 0 = Master Clear (pin) Reset has not occurred          |
| bit 6 | SWR: Software Reset Flag bit                           |
|       | 1 = Software Reset was executed                        |
|       | 0 = Software Reset as not executed                     |
| bit 5 | Unimplemented: Read as '0'                             |
| bit 4 | WDTO: Watchdog Timer Time-out Flag bit                 |
|       | 1 = WDT Time-out has occurred                          |
|       | 0 = WDT Time-out has not occurred                      |
| bit 3 | SLEEP: Wake From Sleep Flag bit                        |
|       | 1 = Device was in Sleep mode                           |
|       | 0 = Device was not in Sleep mode                       |
| bit 2 | IDLE: Wake From Idle Flag bit                          |
|       | 1 = Device was in Idle mode                            |
|       | 0 = Device was not in Idle mode                        |
| bit 1 | BOR: Brown-out Reset Flag bit <sup>(1)</sup>           |
|       | 1 = Brown-out Reset has occurred                       |
|       | 0 = Brown-out Reset has not occurred                   |
| bit 0 | POR: Power-on Reset Flag bit <sup>(1)</sup>            |
|       | 1 = Power-on Reset has occurred                        |
|       | 0 = Power-on Reset has not occurred                    |
|       |                                                        |

**Note 1:** User software must clear this bit to view next detection.

# 7.1 Interrupt Control Registers

### TABLE 7-2: INTERRUPT REGISTER MAP

| ess                      |                                 | 0         |        | Bits   |        |             |             |         |            |         |        |          |          |           |                      |         |        |        |               |
|--------------------------|---------------------------------|-----------|--------|--------|--------|-------------|-------------|---------|------------|---------|--------|----------|----------|-----------|----------------------|---------|--------|--------|---------------|
| Virtual Addr<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15  | 30/14  | 29/13  | 28/12       | 27/11       | 26/10   | 25/9       | 24/8    | 23/7   | 22/6     | 21/5     | 20/4      | 19/3                 | 18/2    | 17/1   | 16/0   | All<br>Resets |
| 1000                     |                                 | 31:16     |        |        | —      | —           |             | —       | —          |         |        | _        |          | _         | —                    | _       | _      | _      | 0000          |
| 1000                     | INTCOM                          | 15:0      |        | -      | _      | MVEC        | —           |         | TPC<2:0>   |         | -      | —        | _        | INT4EP    | INT3EP               | INT2EP  | INT1EP | INT0EP | 0000          |
| 1010                     | INITSTAT(3)                     | 31:16     | _      | —      | —      | —           | —           | —       | —          | _       | _      | —        | —        | —         | —                    |         |        |        | 0000          |
| 1010                     | INTOTAL                         | 15:0      |        | —      |        | —           | —           |         | SRIPL<2:0> |         | —      | —        |          |           | VEC<5:0              | )>      |        |        | 0000          |
| 1020                     | IPTMR                           | 31:16     |        |        |        |             |             |         |            | IPTMR<3 | 1.0>   |          |          |           |                      |         |        |        | 0000          |
| 1020                     |                                 | 15:0      |        | -      | -      | -           |             | -       | -          |         | 1.0-   |          |          |           | -                    | -       | -      | -      | 0000          |
| 1030                     | IES0                            | 31:16     | FCEIF  | RTCCIF | FSCMIF | AD1IF       | OC5IF       | IC5IF   | IC5EIF     | T5IF    | INT4IF | OC4IF    | IC4IF    | IC4EIF    | T4IF                 | INT3IF  | OC3IF  | IC3IF  | 0000          |
| 1030                     | 11 00                           | 15:0      | IC3EIF | T3IF   | INT2IF | OC2IF       | IC2IF       | IC2EIF  | T2IF       | INT1IF  | OC1IF  | IC1IF    | IC1EIF   | T1IF      | INT0IF               | CS1IF   | CS0IF  | CTIF   | 0000          |
| 1040                     | IES1                            | 31:16     | DMA3IF | DMA2IF | DMA1IF | DMA0IF      | CTMUIF      | I2C2MIF | I2C2SIF    | I2C2BIF | U2TXIF | U2RXIF   | U2EIF    | SPI2TXIF  | SPI2RXIF             | SPI2EIF | PMPEIF | PMPIF  | 0000          |
| 1040                     | 11.51                           | 15:0      | CNCIF  | CNBIF  | CNAIF  | I2C1MIF     | I2C1SIF     | I2C1BIF | U1TXIF     | U1RXIF  | U1EIF  | SPI1TXIF | SPI1RXIF | SPI1EIF   | USBIF <sup>(2)</sup> | CMP3IF  | CMP2IF | CMP1IF | 0000          |
| 1060                     | IECO                            | 31:16     | FCEIE  | RTCCIE | FSCMIE | AD1IE       | OC5IE       | IC5IE   | IC5EIE     | T5IE    | INT4IE | OC4IE    | IC4IE    | IC4EIE    | T4IE                 | INT3IE  | OC3IE  | IC3IE  | 0000          |
| 1000                     | ILCO                            | 15:0      | IC3EIE | T3IE   | INT2IE | OC2IE       | IC2IE       | IC2EIE  | T2IE       | INT1IE  | OC1IE  | IC1IE    | IC1EIE   | T1IE      | INT0IE               | CS1IE   | CS0IE  | CTIE   | 0000          |
| 1070                     | IEC1                            | 31:16     | DMA3IE | DMA2IE | DMA1IE | DMA0IE      | CTMUIE      | I2C2MIE | I2C2SIE    | I2C2BIE | U2TXIE | U2RXIE   | U2EIE    | SPI2TXIE  | SPI2RXIE             | SPI2EIE | PMPEIE | PMPIE  | 0000          |
| 1070                     | ILCI                            | 15:0      | CNCIE  | CNBIE  | CNAIE  | I2C1MIE     | I2C1SIE     | I2C1BIE | U1TXIE     | U1RXIE  | U1EIE  | SPI1TXIE | SPI1RXIE | SPI1EIE   | USBIE <sup>(2)</sup> | CMP3IE  | CMP2IE | CMP1IE | 0000          |
| 1000                     |                                 | 31:16     | _      | —      | _      |             | INT0IP<2:0> |         | INTOIS     | <1:0>   | _      | _        | _        | C         | S1IP<2:0>            |         | CS1IS  | S<1:0> | 0000          |
| 1090                     | IFCU                            | 15:0      | -      | —      | _      |             | CS0IP<2:0>  |         | CS0IS      | <1:0>   | -      | _        | _        | (         | CTIP<2:0>            |         | CTIS   | <1:0>  | 0000          |
| 1040                     | IDC1                            | 31:16     |        | —      | _      |             | INT1IP<2:0> |         | INT1IS     | <1:0>   |        | _        | —        | C         | C1IP<2:0>            |         | OC1IS  | S<1:0> | 0000          |
| IUAU                     | IFCT                            | 15:0      |        | _      | _      |             | IC1IP<2:0>  |         | IC1IS-     | <1:0>   |        | -        | —        | -         | T1IP<2:0>            |         | T1IS   | <1:0>  | 0000          |
| 1000                     |                                 | 31:16     | _      | _      | _      |             | INT2IP<2:0> |         | INT2IS     | <1:0>   | _      | _        | _        | C         | C2IP<2:0>            |         | OC2IS  | 6<1:0> | 0000          |
| 1080                     | IPC2                            | 15:0      |        | _      |        |             | IC2IP<2:0>  |         | IC2IS-     | <1:0>   | -      | —        | _        | -         | T2IP<2:0>            |         | T2IS   | <1:0>  | 0000          |
| 1000                     | IDO2                            | 31:16     | _      | —      | _      |             | INT3IP<2:0> |         | INT3IS     | <1:0>   | _      | —        | _        | C         | C3IP<2:0>            |         | OC3IS  | 6<1:0> | 0000          |
| 1000                     | IPC3                            | 15:0      | _      | —      | _      |             | IC3IP<2:0>  |         | IC3IS-     | <1:0>   | _      | —        | _        | -         | T3IP<2:0>            |         | T3IS-  | <1:0>  | 0000          |
| 1000                     |                                 | 31:16     | _      | —      | _      | INT4IP<2:0> |             | INT4IS  | <1:0>      | _       | —      | _        | C        | C4IP<2:0> |                      | OC4IS   | 6<1:0> | 0000   |               |
| 1000                     | IPC4                            | 15:0      |        | _      |        |             | IC4IP<2:0>  |         | IC4IS•     | <1:0>   | -      | —        | _        | -         | T4IP<2:0>            |         | T4IS   | <1:0>  | 0000          |
| 4050                     | IDOS                            | 31:16     | _      | _      | _      | AD1IP<2:0>  |             |         | AD1IS      | <1:0>   | _      | _        | _        | C         | C5IP<2:0>            |         | OC5IS  | 6<1:0> | 0000          |
| IUEU                     | IPC5                            | 15:0      | _      | _      | _      |             | IC5IP<2:0>  |         | IC5IS-     | <1:0>   | _      | _        | _        | -         | T5IP<2:0>            |         | T5IS   | <1:0>  | 0000          |
| 1050                     | IDCC                            | 31:16     | —      | _      | —      | (           | CMP1IP<2:0> | >       | CMP1IS     | S<1:0>  | —      | —        | _        | F         | CEIP<2:0>            |         | FCEIS  | 6<1:0> | 0000          |
| 10-0                     | IPCO                            | 15:0      | _      | _      | —      | F           | RTCCIP<2:0> | >       | RTCCIS     | S<1:0>  | _      | _        |          | FS        | CMIP<2:0>            | >       | FSCMI  | S<1:0> | 0000          |

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31:24        |                   | —                 | _                 | _                 | —                 | _                 | _                | —                |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 23:10        | CHSDIE            | CHSHIE            | CHDDIE            | CHDHIE            | CHBCIE            | CHCCIE            | CHTAIE           | CHERIE           |
| 45.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15:8         | —                 | _                 | —                 | —                 | _                 | —                 | —                | —                |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | CHSDIF            | CHSHIF            | CHDDIF            | CHDHIF            | CHBCIF            | CHCCIF            | CHTAIF           | CHERIF           |

#### **REGISTER 9-9:** DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER

# Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

| bit 31-24  | Unimplemented: Read as '0'                                                                                  |
|------------|-------------------------------------------------------------------------------------------------------------|
| bit 23     | CHSDIE: Channel Source Done Interrupt Enable bit                                                            |
|            | 1 = Interrupt is enabled                                                                                    |
| h:+ 00     | 0 = Interrupt is disabled                                                                                   |
| DIT 22     |                                                                                                             |
|            | 0 = Interrupt is enabled                                                                                    |
| bit 21     | CHDDIE: Channel Destination Done Interrupt Enable bit                                                       |
|            | 1 = Interrupt is enabled                                                                                    |
|            | 0 = Interrupt is disabled                                                                                   |
| bit 20     | CHDHIE: Channel Destination Half Full Interrupt Enable bit                                                  |
|            | 1 = Interrupt is enabled                                                                                    |
|            | 0 = Interrupt is disabled                                                                                   |
| bit 19     | CHBCIE: Channel Block Transfer Complete Interrupt Enable bit                                                |
|            | 1 =  Interrupt is enabled<br>0 =  Interrupt is disabled                                                     |
| bit 18     | CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit                                                 |
|            | 1 = Interrupt is enabled                                                                                    |
|            | 0 = Interrupt is disabled                                                                                   |
| bit 17     | CHTAIE: Channel Transfer Abort Interrupt Enable bit                                                         |
|            | 1 = Interrupt is enabled                                                                                    |
|            |                                                                                                             |
| bit 16     | CHERIE: Channel Address Error Interrupt Enable bit                                                          |
|            | 1 =  Interrupt is enabled<br>0 =  Interrupt is disabled                                                     |
| bit 15-8   | Unimplemented: Read as '0'                                                                                  |
| bit 7      | CHSDIF: Channel Source Done Interrupt Flag bit                                                              |
|            | 1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)                                      |
|            | 0 = No interrupt is pending                                                                                 |
| bit 6      | CHSHIF: Channel Source Half Empty Interrupt Flag bit                                                        |
|            | 1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)                               |
|            | 0 = No interrupt is pending                                                                                 |
| bit 5      | CHDDIF: Channel Destination Done Interrupt Flag bit                                                         |
|            | 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)0 = No interrupt is pending |
|            |                                                                                                             |
|            |                                                                                                             |
| © 2011-201 | 16 Microchip Technology Inc. D                                                                              |

DS60001168J-page 95

# 12.0 TIMER1

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications.

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

# 12.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Figure 12-1 illustrates a general block diagram of Timer1.



# REGISTER 12-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 3 Unimplemented: Read as '0'
  bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit When TCS = 1: 1 = External clock input is synchronized 0 = External clock input is not synchronized When TCS = 0: This bit is ignored.
  bit 1 TCS: Timer Clock Source Select bit 1 = External clock from TxCKI pin
  - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCmLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

# REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER

bit 3 SPITBE: SPI Transmit Buffer Empty Status bit 1 = Transmit buffer, SPIxTXB is empty 0 = Transmit buffer, SPIxTXB is not empty Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPI Transmit Buffer Full Status bit 1 = Transmit not yet started, SPITXB is full 0 = Transmit buffer is not full Standard Buffer Mode: Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. Enhanced Buffer Mode: Set when CWPTR + 1 = SRPTR; cleared otherwise bit 0 SPIRBF: SPI Receive Buffer Full Status bit 1 = Receive buffer, SPIxRXB is full

0 = Receive buffer, SPIxRXB is not full

#### Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

#### Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1                                           | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------------------------------------|------------------|
| 24.24        | U-0                                                        | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                                                          | —                |
| 22:16        | U-0                                                        | U-0              |
| 23.10        | —                 | —                 | —                 | —                 | —                 | —                 | —                                                          | —                |
| 45.0         | R-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0                                                      | R/W-0            |
| 15:8         | BUSY              | IRQM              | IRQM<1:0>         |                   | INCM<1:0>         |                   | MODE                                                       | =<1:0>           |
| 7.0          | R/W-0                                                      | R/W-0            |
| 7:0          | WAITB             | <1:0>(1)          |                   | WAITM             | <3:0>(1)          |                   | 25/17/9/1<br>U-0<br>U-0<br>R/W-0<br>MODE<br>R/W-0<br>WAITE | <1:0>(1)         |

#### REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
  - 1 = Port is busy
  - 0 = Port is not busy

#### bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated

#### bit 12-11 INCM<1:0>: Increment Mode bits

- 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
- 10 = Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle<sup>(2)</sup>
- 01 = Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle<sup>(2)</sup>
- 00 = No increment or decrement of address
- bit 10 Unimplemented: Read as '0'
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
  - 11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<7:0>)
  - 10 = Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<7:0>)
  - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<7:0>, and PMA<1:0>)
  - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<7:0>)
- bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits<sup>(1)</sup>
  - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
  - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
  - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
  - 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)

### bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits<sup>(1)</sup>

- 1111 = Wait of 16 Трв •
- . 0001 = Wait of 2 Трв 0000 = Wait of 1 Трв (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
  - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2                                                                                                                                                                                                      | Bit<br>25/17/9/1                                       | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                                                                                                                                                                                                                    | U-0                                                    | U-0              |
| 31.24        | —                 | —                 | —                 | —                 | —                 | —                                                                                                                                                                                                                      | —                                                      | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                                                                                                                                                                                                                    | U-0                                                    | U-0              |
| 23:10        | —                 | —                 | —                 | —                 | —                 | —                                                                                                                                                                                                                      | —                                                      | —                |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | U-0               | R/W-0                                                                                                                                                                                                                  | U-0                                                    | U-0              |
| 15:8         |                   | VCFG<2:0>         |                   | OFFCAL            | —                 | Bit<br>26/18/10/2         Bit<br>25/17/9/1           U-0         U-0           —         —           U-0         U-0           RW-0         U-0           RW-0         RW-0           RW-0         RW-0           BUFM | —                                                      |                  |
| 7.0          | R-0               | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0                                                                                                                                                                                                                  | R/W-0                                                  | R/W-0            |
| 7:0          | BUFS              | —                 |                   | SMP               | 1<3:0>            |                                                                                                                                                                                                                        | 25/17/9/1<br>U-0<br>U-0<br>U-0<br>U-0<br>R/W-0<br>BUFM | ALTS             |

## REGISTER 22-2: AD1CON2: ADC CONTROL REGISTER 2

# Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
|-------------------|------------------|----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

#### bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

|     | VREFH              | VREFL              |
|-----|--------------------|--------------------|
| 000 | AVDD               | AVss               |
| 001 | External VREF+ pin | AVss               |
| 010 | AVdd               | External VREF- pin |
| 011 | External VREF+ pin | External VREF- pin |
| 1xx | AVDD               | AVss               |

#### bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

#### 1 = Enable Offset Calibration mode

Positive and negative inputs of the sample and hold amplifier are connected to VREFL

#### 0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

#### bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
  - 1 = Scan inputs
  - 0 = Do not scan inputs

#### bit 9-8 **Unimplemented:** Read as '0'

bit 7 **BUFS:** Buffer Fill Status bit

Only valid when BUFM = 1.

1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7

0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

#### bit 6 Unimplemented: Read as '0'

### bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

```
1111 = Interrupts at the completion of conversion for each 16<sup>th</sup> sample/convert sequence
```

```
1110 = Interrupts at the completion of conversion for each 15<sup>th</sup> sample/convert sequence
```

- .
- •

0001 = Interrupts at the completion of conversion for each  $2^{nd}$  sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

### bit 1 BUFM: ADC Result Buffer Mode Select bit

- 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
  - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0

### bit 0 ALTS: Alternate Input Sample Mode Select bit

- 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
- 0 = Always use Sample A input multiplexer settings

NOTES:

# 26.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 26-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

| TARI E 26-1· | PERIPHERAL MODULE DISABLE BITS AND LOCATIONS  |
|--------------|-----------------------------------------------|
| TADLL 20-1.  | FERIFILICAL MODULE DISABLE DITS AND LOCATIONS |

| Peripheral <sup>(1)</sup>    | PMDx bit Name <sup>(1)</sup> | Register Name and Bit Location |
|------------------------------|------------------------------|--------------------------------|
| ADC1                         | AD1MD                        | PMD1<0>                        |
| СТМU                         | CTMUMD                       | PMD1<8>                        |
| Comparator Voltage Reference | CVRMD                        | PMD1<12>                       |
| Comparator 1                 | CMP1MD                       | PMD2<0>                        |
| Comparator 2                 | CMP2MD                       | PMD2<1>                        |
| Comparator 3                 | CMP3MD                       | PMD2<2>                        |
| Input Capture 1              | IC1MD                        | PMD3<0>                        |
| Input Capture 2              | IC2MD                        | PMD3<1>                        |
| Input Capture 3              | IC3MD                        | PMD3<2>                        |
| Input Capture 4              | IC4MD                        | PMD3<3>                        |
| Input Capture 5              | IC5MD                        | PMD3<4>                        |
| Output Compare 1             | OC1MD                        | PMD3<16>                       |
| Output Compare 2             | OC2MD                        | PMD3<17>                       |
| Output Compare 3             | OC3MD                        | PMD3<18>                       |
| Output Compare 4             | OC4MD                        | PMD3<19>                       |
| Output Compare 5             | OC5MD                        | PMD3<20>                       |
| Timer1                       | T1MD                         | PMD4<0>                        |
| Timer2                       | T2MD                         | PMD4<1>                        |
| Timer3                       | T3MD                         | PMD4<2>                        |
| Timer4                       | T4MD                         | PMD4<3>                        |
| Timer5                       | T5MD                         | PMD4<4>                        |
| UART1                        | U1MD                         | PMD5<0>                        |
| UART2                        | U2MD                         | PMD5<1>                        |
| SPI1                         | SPI1MD                       | PMD5<8>                        |
| SPI2                         | SPI2MD                       | PMD5<9>                        |
| I2C1                         | I2C1MD                       | PMD5<16>                       |
| 12C2                         | I2C2MD                       | PMD5<17>                       |
| USB <sup>(2)</sup>           | USBMD                        | PMD5<24>                       |
| RTCC                         | RTCCMD                       | PMD6<0>                        |
| Reference Clock Output       | REFOMD                       | PMD6<1>                        |
| PMP                          | PMPMD                        | PMD6<16>                       |

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

2: The module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# FIGURE 30-3: I/O TIMING CHARACTERISTICS



### TABLE 30-21: I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS               |      |                           | Standard Ope<br>(unless other<br>Operating terr | erating Co<br>wise state<br>perature | ed)<br>-40°C ≤ TA<br>-40°C ≤ TA | <b>3V to 3.6\</b><br>≤ +85°C fo<br>≤ +105°C | /<br>or Industria<br>for V-temp | l          |
|----------------------------------|------|---------------------------|-------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------------|---------------------------------|------------|
| Param.<br>No. Symbol Characteris |      |                           | stics <sup>(2)</sup>                            | Min.                                 | Typical <sup>(1)</sup>          | Max.                                        | Units                           | Conditions |
| DO31                             | TioR | Port Output Rise Tir      | ne                                              |                                      | 5                               | 15                                          | ns                              | Vdd < 2.5V |
|                                  |      |                           |                                                 |                                      | 5                               | 10                                          | ns                              | VDD > 2.5V |
| DO32                             | TIOF | Port Output Fall Time     |                                                 |                                      | 5                               | 15                                          | ns                              | VDD < 2.5V |
|                                  |      |                           |                                                 |                                      | 5                               | 10                                          | ns                              | VDD > 2.5V |
| DI35                             | TINP | INTx Pin High or Low Time |                                                 | 10                                   | —                               | —                                           | ns                              | —          |
| DI40                             | Trbp | CNx High or Low Ti        | me (input)                                      | 2                                    | _                               | _                                           | TSYSCLK                         | _          |

**Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

# 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]





Microchip Technology Drawing C04-157C Sheet 1 of 2

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

# 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





DETAIL A

|                         | MILLIMETERS |               |          |       |  |
|-------------------------|-------------|---------------|----------|-------|--|
| Dimension               | Limits      | MIN           | NOM      | MAX   |  |
| Number of Pins          | N           |               | 44       | -     |  |
| Number of Pins per Side | ND          |               | 12       |       |  |
| Number of Pins per Side | NE          |               | 10       |       |  |
| Pitch                   | е           | 0.50 BSC      |          |       |  |
| Overall Height          | A           | 0.80 0.90 1.0 |          |       |  |
| Standoff                | A1          | 0.025         | -        | 0.075 |  |
| Overall Width           | E           | 6.00 BSC      |          |       |  |
| Exposed Pad Width       | E2          | 4.40 4.55 4.7 |          |       |  |
| Overall Length          | D           |               | 6.00 BSC | -     |  |
| Exposed Pad Length      | D2          | 4.40          | 4.55     | 4.70  |  |
| Contact Width           | b           | 0.20          | 0.25     | 0.30  |  |
| Contact Length          | L           | 0.20          | 0.25     | 0.30  |  |
| Contact-to-Exposed Pad  | K           | 0.20          | _        | -     |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2

# PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES:

#### Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV — ISO/TS 16949—

#### Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$  is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN:978-1-5224-0471-2