

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f256dt-v-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

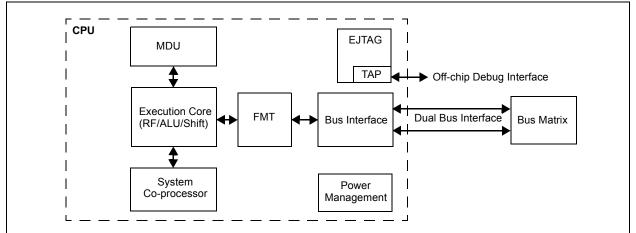
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

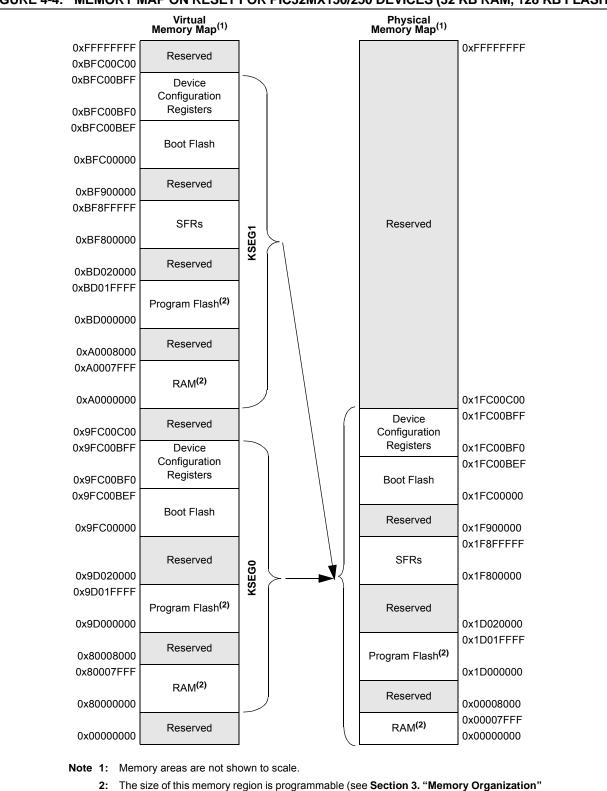
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at: www.imgtec.com.


The MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX1XX/2XX family processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the destinations.


3.1 Features

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 2)
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - Bit field manipulation instructions

- MIPS16e[®] code compression
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) mechanism
- · Simple dual bus interface
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- · Autonomous multiply/divide unit
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- Power control
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG debug and instruction trace
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

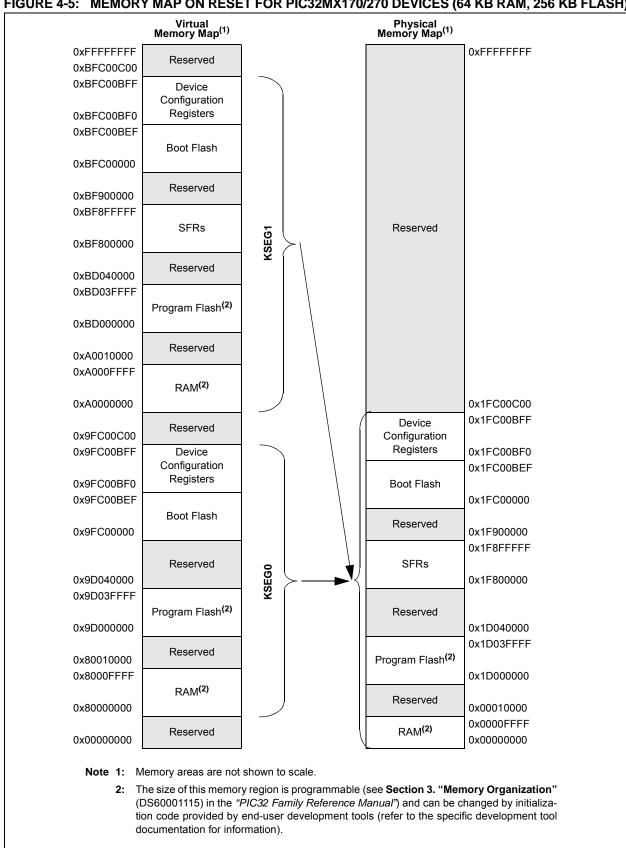

FIGURE 3-1: MIPS32[®] M4K[®] PROCESSOR CORE BLOCK DIAGRAM

FIGURE 4-4: MEMORY MAP ON RESET FOR PIC32MX150/250 DEVICES (32 KB RAM, 128 KB FLASH)

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115) in the "*PIC32 Family Reference Manual*") and can be changed by initialization code provided by end-user development tools (refer to the specific development tool documentation for information).

FIGURE 4-5: MEMORY MAP ON RESET FOR PIC32MX170/270 DEVICES (64 KB RAM, 256 KB FLASH)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_	_		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	_	_	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
15:8				BMXDK	PBA<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				BMXDK	PBA<7:0>			

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	_	_	—		_	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16		—	_	-	_	—		_	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	
15:8				BMXDU	PBA<15:8>				
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	BMXDUPBA<7:0>								

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 **BMXDUPBA<9:0>:** Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	_	—	-	—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	—	_	—	-	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
10.0	_	—	_	—	_	—	_	—	
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC	
7:0	—	—	_	—	_	—	—	SWRST ⁽¹⁾	

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend: HC = Cleared by hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾ 1 = Enable Software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit is written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data
	sheet, refer to Section 6. "Oscillator
	Configuration" (DS60001112), which is
	available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

The PIC32MX1XX/2XX 28/36/44-pin Family oscillator system has the following modules and features:

- Four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—		_	—
23:16	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	—	—	_	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	_	—	_	_	_	—
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	_			TUN<	5:0> (1)		

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	—	-	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_			—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_					_	_

REGISTER 11-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A, B, C)

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

NOTES:

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	_	—	—	—	-	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	_	—	—	_	-	
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	15:8 ADRC — — SAMC<4:0>(1)								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0	
7:0				ADCS<	7:0> (2)				

Legend:

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

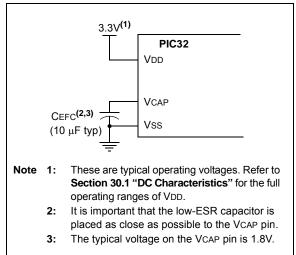
- bit 15 ADRC: ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - **2:** This bit is not used if the ADRC (AD1CON3<15>) bit = 1.

27.3 On-Chip Voltage Regulator

All PIC32MX1XX/2XX 28/36/44-pin Family devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX1XX/2XX 28/36/44-pin Family family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 30.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

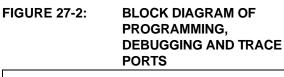

27.3.1 ON-CHIP REGULATOR AND POR

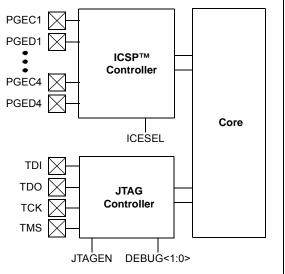
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

27.3.2 ON-CHIP REGULATOR AND BOR

PIC32MX1XX/2XX 28/36/44-pin Family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 30.1 "DC Characteristics"**.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR


27.4 Programming and Diagnostics


PIC32MX1XX/2XX 28/36/44-pin Family devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

Figure 27-2 illustrates a block diagram of the programming, debugging, and trace ports.

NOTES:

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
Operati	ng Voltag	e						
DC10	Vdd	Supply Voltage (Note 2)	2.3		3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	_	—	V	_	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	—	2.1	V	_	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	_	0.115	V/μs	_	

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 30-11 for BOR values.

TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA		ISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: } 2.3V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \ for \ V-temp \end{array}$				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)	_	μs	—	
			400 kHz mode	Трв * (BRG + 2)		μS	—	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)		μS	—	
			400 kHz mode	Трв * (BRG + 2)	_	μS	—	
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs	-	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	_	100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	_	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	—	
			400 kHz mode	100	_	ns		
			1 MHz mode (Note 2)	100		ns		
IM26	THD:DAT	Data Input	100 kHz mode	0		μS	—	
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode (Note 2)	0	0.3	μS		
IM30	TSU:STA		100 kHz mode	Трв * (BRG + 2)		μS	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)	_	μS	Repeated Start condition	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)		μS	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	-	μS	first clock pulse is generated	
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μS	generaleu	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	_	μS		
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	_	ns		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	ns		

Note 1: BRG is the value of the I^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

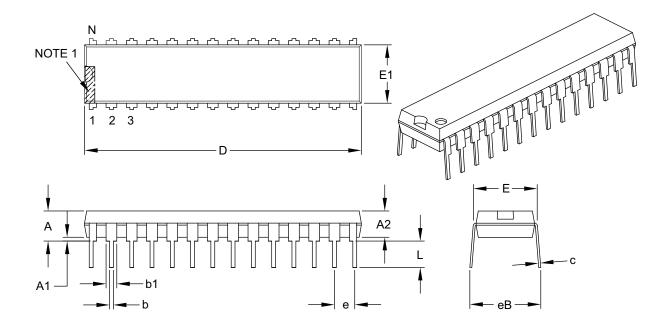
AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industr} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temperature} \\ \end{array}$				
Param. No.	Symbol Chara		eristics	Min.	Max.	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	1.3	—	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	_	μS	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	PBCLK must operate at a minimum of 800 kHz	
			400 kHz mode	0.6	_	μS	PBCLK must operate at a minimum of 3.2 MHz	
			1 MHz mode (Note 1)	0.5	_	μS		
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	_	100	ns		
IS21	TR:SCL	L SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode (Note 1)	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_	
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode (Note 1)	100	—	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode (Note 1)	0	0.3	μS		
IS30	TSU:STA		100 kHz mode	4700	—	ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—	ns	Start condition	
			1 MHz mode (Note 1)	250	—	ns		
IS31	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600	—	ns	clock pulse is generated	
			1 MHz mode (Note 1)	250	—	ns		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000		ns		
		Setup Time	400 kHz mode	600		ns]	
			1 MHz mode (Note 1)	600		ns		

TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Param No.	Symbol Characteristic		Min.	Тур.	Max.	Units	Conditions
CTMU CURRENT SOURCE							
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	_	0.55	_	μA	CTMUCON<9:8> = 01
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUCON<9:8> = 10
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	_	55		μA	CTMUCON<9:8> = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550		μA	CTMUCON<9:8> = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	—	0.598	_	V	TA = +25°C, CTMUCON<9:8> = 01
			_	0.658	_	V	TA = +25°C, CTMUCON<9:8> = 10
			—	0.721		V	TA = +25°C, CTMUCON<9:8> = 11
CTMUFV2	VFVR	Temperature Diode Rate of	—	-1.92	_	mV/ºC	CTMUCON<9:8> = 01
		Change ^(1,2)	_	-1.74		mV/ºC	CTMUCON<9:8> = 10
			_	-1.56		mV/ºC	CTMUCON<9:8> = 11


Note 1: Nominal value at center point of current trim range (CTMUCON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC module configured for conversion speed of 500 ksps
- All PMD bits are cleared (PMDx = 0)
- Executing a while(1) statement
- Device operating from the FRC with no PLL
- **3:** The CTMU module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		.100 BSC			
Top to Seating Plane	Α	-	-	.200		
Molded Package Thickness	A2	.120	.135	.150		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.335		
Molded Package Width	E1	.240	.285	.295		
Overall Length	D	1.345	1.365	1.400		
Tip to Seating Plane	L	.110	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.050	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eВ	-	-	.430		

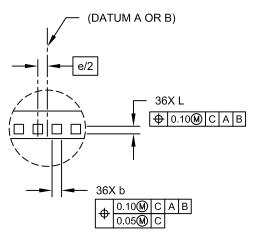
Notes:

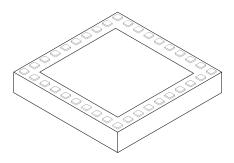
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-070B

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX	
Number of Pins	Ν		36		
Number of Pins per Side	ND		10		
Number of Pins per Side	NE		8		
Pitch	е	0.50 BSC			
Overall Height	А	0.80 0.90 1.0			
Standoff	A1 0.025			0.075	
Overall Width	Е	5.00 BSC			
Exposed Pad Width	E2	3.60 3.75 3.9			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	2 3.60 3.75			
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2