

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	256КВ (256К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx270f256dt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

	1												1	r –	1	1			
				Rem	nappab	le Pe	riphe	erals					÷		ls)				
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/Compare	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	l²C	AMP	DMA Channels (Programmable/Dedicatec	CTMU	10-bit 1 Msps ADC (Channe	RTCC	I/O Pins	JTAG	Packages
PIC32MX210F016B	28	16+3	4	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX210F016C	36	16+3	4	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	25	Y	VTLA
PIC32MX210F016D	44	16+3	4	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VILA, TQFP, QFN
PIC32MX220F032B	28	32+3	8	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX220F032C	36	32+3	8	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA
PIC32MX220F032D	44	32+3	8	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX230F064B	28	64+3	16	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX230F064C	36	64+3	16	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA
PIC32MX230F064D	44	64+3	16	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VILA, TQFP, QFN
PIC32MX250F128B	28	128+3	32	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX250F128C	36	128+3	32	23	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	12	Y	23	Y	VTLA
PIC32MX250F128D	44	128+3	32	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX230F256B	28	256+3	16	20	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX230F256D	44	256+3	16	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX270F256B	28	256+3	64	19	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	9	Y	19	Y	SOIC, SSOP, SPDIP, QFN
PIC32MX270F256D	44	256+3	64	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, QFN
PIC32MX270F256DB(4)	44	256+3	64	31	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	13	Y	33	Y	VTLA, TQFP, OFN

TABLE 2: PIC32MX2XX 28/36/44-PIN USB FAMILY FEATURES

Note 1: This device features 3 KB of boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

4: This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers.

TABLE 7: PIN NAMES FOR 36-PIN GENERAL PURPOSE DEVICES

36-PIN VTLA (TOP VIEW)^(1,2,3,5)

PIC32MX110F016C PIC32MX120F032C PIC32MX130F064C PIC32MX150F128C

36

			I
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	19	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	20	RPC9/CTED7/RC9
3	PGED4 ⁽⁴⁾ /AN6/RPC0/RC0	21	Vss
4	PGEC4 ⁽⁴⁾ /AN7/RPC1/RC1	22	VCAP
5	VDD	23	VDD
6	Vss	24	PGED2/RPB10/CTED11/PMD2/RB10
7	OSC1/CLKI/RPA2/RA2	25	PGEC2/TMS/RPB11/PMD1/RB11
8	OSC2/CLKO/RPA3/PMA0/RA3	26	AN12/PMD0/RB12
9	SOSCI/RPB4/RB4	27	AN11/RPB13/CTPLS/PMRD/RB13
10	SOSCO/RPA4/T1CK/CTED9/PMA1/RA4	28	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
11	RPC3/RC3	29	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
12	Vss	30	AVss
13	VDD	31	AVdd
14	VDD	32	MCLR
15	PGED3/RPB5/PMD7/RB5	33	VREF+/CVREF+/AN0/C3INC/RPA0/CTED1/RA0
16	PGEC3/RPB6/PMD6/RB6	34	VREF-/CVREF-/AN1/RPA1/CTED2/RA1
17	TDI/RPB7/CTED3/PMD5/INT0/RB7	35	PGED1/AN2/C1IND/C2INB/C3IND/RPB0/RB0
18	TCK/RPB8/SCL1/CTED10/PMD4/RB8	36	PGEC1/AN3/C1INC/C2INA/RPB1/CTED12/RB1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 11.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RCx) can be used as a change notification pin (CNAx-CNCx). See Section 11.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: This pin function is not available on PIC32MX110F016C and PIC32MX120F032C devices.

5: Shaded pins are 5V tolerant.

		Pin Nu	mber ⁽¹⁾				
Pin Name	28-pin QFN	28-pin SSOP/ SPDIP/ SOIC	36-pin VTLA	44-pin QFN/ TQFP/ VTLA	Pin Type	Buffer Type	Description
RC0	—	—	3	25	I/O	ST	PORTC is a bidirectional I/O port
RC1	—	_	4	26	I/O	ST	-
RC2	—	—	_	27	I/O	ST	
RC3	—	—	11	36	I/O	ST	
RC4	—	—		37	I/O	ST	
RC5	—	—	—	38	I/O	ST	
RC6	—	—	_	2	I/O	ST	_
RC7	—	—		3	I/O	ST	_
RC8	_	—	_	4	I/O	ST	_
RC9		-	20	5	1/0	ST	
TICK	9	12	10	34		SI	Timer1 external clock input
T2CK	PPS DDS	PPS	PPS	PPS		SI	Timer2 external clock input
TACK	PP3	PP3	PP3	PP3	1	ST ST	Timers external clock input
T4CK	PPS	PPS	PPS	PPS	1	ST	Timer5 external clock input
						от ет	
			FF3	FF3	1	31	
	PPS DDS	PPS	PPS	PPS	0		
	PP5	PPS		PPS DDC	1	51	
	PP5	PPS	PP5	PPS	0		UARI1 transmit
U2CTS	PPS	PPS	PPS	PPS	I	ST	UART2 clear to send
U2RTS	PPS	PPS	PPS	PPS	0		UART2 ready to send
U2RX	PPS	PPS	PPS	PPS	I	ST	UART2 receive
U2TX	PPS	PPS	PPS	PPS	0	—	UART2 transmit
SCK1	22	25	28	14	I/O	ST	Synchronous serial clock input/output for SPI1
SDI1	PPS	PPS	PPS	PPS	I	ST	SPI1 data in
SDO1	PPS	PPS	PPS	PPS	0	_	SPI1 data out
SS1	PPS	PPS	PPS	PPS	I/O	ST	SPI1 slave synchronization or frame pulse I/O
SCK2	23	26	29	15	I/O	ST	Synchronous serial clock input/output for SPI2
SDI2	PPS	PPS	PPS	PPS	I	ST	SPI2 data in
SDO2	PPS	PPS	PPS	PPS	0	_	SPI2 data out
SS2	PPS	PPS	PPS	PPS	I/O	ST	SPI2 slave synchronization or frame pulse I/O
SCL1	14	17	18	44	I/O	ST	Synchronous serial clock input/output for I2C1
Legend:	CMOS = C	MOS compa	tible input	or output	I	Analog =	Analog input P = Power
-	ST = Schmi	itt Trigger in	put with CI	MOS levels		O = Outp	but I=Input
	TTL = TTL i	input buffer				PPS = P	eripheral Pin Select — = N/A

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for PIC32MX1XX devices only.

3: Pin number for PIC32MX2XX devices only.

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX110/210 DEVICES (4 KB RAM, 16 KB FLASH)

4.2 Bus Matrix Control Registers

TABLE 4-2: BUS MATRIX REGISTER MAP

ess)		ø										Bits							
Virtual Addr (BF88_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16	_		_	_	—	_		_	_	_	_	BMXERRIXI	BMXERRICD	BMXERRDMA	BMXERRDS	BMXERRIS	001F
2000	BINIXCON	15:0		_	_	_	_	-		—	_	BMXWSDRM	_	_	—	BI	MXARB<2:0>		0041
2010		31:16	_		_		_	_		_	_	_	_	_	—	_	_	_	0000
2010	DIVIADAPDA'	15:0		BMXDKPBA<15:0> 0000															
2020		31:16	_					_		—	_	—	—	_	—		_		0000
2020	BINIADODBA	15:0									BM	XDUDBA<15:0	>						0000
2030		31:16	—	_	_		_	—	_	—	—	—	—	—	—	—	—	-	0000
2000		15:0									BN	IXDUPBA<15:0>	>						0000
2040	BMXDRMS7	31:16									BM	XDRMS7<31.0	>						xxxx
2040	DIVINDI (IVIOZ	15:0																	xxxx
2050		31:16	—	BMXPUPBA<19:16> 0000															
2000		15:0		BMXPUPBA<15:0> 0000															
2060	BMYDEMS7	31:16	BMXPEMS7<31:0>																
2000	DWXTTWOZ	15:0																	
2070	BMXBOOTS7	31:16	DMXBOOTS7<31:0>																
2070	DWIXDOUTSZ	15:0		BMXBOOTSZ<31:0> 0C00															

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
31.24				NVMKE	Y<31:24>			
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
23:10				NVMKE	Y<23:16>			
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
15:8				NVMKI	EY<15:8>			
7:0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
7:0				NVMK	EY<7:0>			

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				NVMAD	DR<31:24>			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10				NVMAD	DR<23:16>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0				NVMAD	DR<15:8>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				NVMA	DR<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

(1)	IRQ	Vector		Interrupt Bit Location			
Interrupt Source ⁽¹⁾	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
		Highes	st Natural O	rder Priority	,		
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 – External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E – Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 – Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 – Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 – External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 – Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E – Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 – Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 – Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 – External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 – Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E – Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 – Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 – Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 – External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 – Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E – Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 – Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 – Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 – External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 – Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E – Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 – Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 – Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 – ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM – Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC – Real-Time Clock and Calendar	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
FCE – Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 – Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 – Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
CMP3 – Comparator Interrupt	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	No
USB – USB Interrupts	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1E – SPI1 Fault	36	31	IFS1<4>	IEC1<4>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1RX – SPI1 Receive Done	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1TX – SPI1 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/36/44-Pin General Purpose Family Features" and TABLE 2: "PIC32MX2XX 28/36/44-pin USB Family Features" for the lists of available peripherals.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	_	_	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
1.0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE

REGISTER 10-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled

bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit

- 1 = 1 millisecond timer interrupt is enabled
- 0 = 1 millisecond timer interrupt is disabled

bit 5 LSTATEIE: Line State Interrupt Enable bit

- 1 = Line state interrupt is enabled
- 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = Activity interrupt is enabled
 - 0 = Activity interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
 - 1 = B-Device session end interrupt is enabled
 - 0 = B-Device session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
 - 1 = A-Device VBUS valid interrupt is enabled
 - 0 = A-Device VBUS valid interrupt is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	—	—	—	—	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	LSPDEN			D	EVADDR<6:0)>		

REGISTER 10-12: U1ADDR: USB ADDRESS REGISTER

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 LSPDEN: Low-Speed Enable Indicator bit

1 = Next token command to be executed at Low-Speed

0 = Next token command to be executed at Full-Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	—	—	—	_	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	_	—	—	—	—	—	_	—
15:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—		—
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
				FRML	<7:0>			

REGISTER 10-13: U1FRML: USB FRAME NUMBER LOW REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **FRML<7:0>:** The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

NOTES:

NOTES:

REGISTI	ER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)								
bit 17	SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)								
	1 = Frame synchronization pulse coincides with the first bit clock								
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾								
Sit 10	1 = Enhanced Buffer mode is enabled								
	0 = Enhanced Buffer mode is disabled								
bit 15	ON: SPI Peripheral On bit ⁽¹⁾								
	1 = SPI Peripheral is enabled								
hit 14	Unimplemented: Read as '0'								
bit 13	SIDL: Stop in Idle Mode bit								
	1 = Discontinue module operation when the device enters Idle mode								
	0 = Continue module operation when the device enters Idle mode								
bit 12	DISSDO: Disable SDOx pin bit								
	1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register $0 = SDOx pin is controlled by the module$								
bit 11-10	MODE<32.16>: 32/16-Bit Communication Select bits								
	When AUDEN = 1:								
	MODE32 MODE16 Communication								
	1 1 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame								
	1 0 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame								
	0 0 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame								
	When AUDEN = 0:								
	MODE32 MODE16 Communication								
	1 x 32-bit								
	0 0 8-bit								
bit 9	SMP: SPI Data Input Sample Phase bit								
	Master mode (MSTEN = 1):								
	 Input data sampled at end of data output time Input data sampled at middle of data output time 								
	Slave mode (MSTEN = 0):								
	SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.								
	To write a '1' to this bit, the MSTEN value = 1 must first be written.								
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾								
	1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit) 0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)								
bit 7	SSEN: Slave Select Enable (Slave mode) bit								
bit i	$1 = \overline{SSx}$ pin used for Slave mode								
	$0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.								
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾								
	1 = 1 dle state for clock is a high level; active state is a low level 0 = 1 dle state for clock is a low level; active state is a high level								
Note 1:	When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in								
	the SYSCLK cycle immediately following the instruction that clears the module's ON bit.								
2:	This bit can only be written when the ON bit = 0.								
3:	I his bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).								
4:	When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value								
	of CKP.								

2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
	CSF<	1:0>(2)	ALP ⁽²⁾	_	CS1P ⁽²⁾	_	WRSP	RDSP

REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 functions as Chip Select
 - 01 = PMCS1 functions as PMA<14>
 - 00 = PMCS1 functions as PMA<14>
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	-	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—		—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
7:0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HSC = Set by Hardware; Cleared by Software				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
 0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 IBxF: Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 **Unimplemented:** Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31.24	—	—	HR10)<1:0>		HR01	<3:0>	
23:16	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	MIN10<2:0>			MIN01<3:0>			
45.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	—		SEC10<2:0>		SEC01<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	—	—	—	—	—		—	—
Legend:								

REGISTER 21-3: RTCTIME: RTC TIME VALUE REGISTER

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is

bit 31-30 Unimplemented: Read as '0'

bit 29-28 HR10<1:0>: Binary-Coded Decimal Value of Hours bits, 10s place digit; contains a value from 0 to 2

bit 27-24 **HR01<3:0>:** Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9 bit 23 **Unimplemented:** Read as '0'

bit 22-20 MIN10<2:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digit; contains a value from 0 to 5

bit 19-16 **MIN01<3:0>:** Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9 bit 15 **Unimplemented:** Read as '0'

bit 14-12 SEC10<2:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digit; contains a value from 0 to 5

bit 11-8 **SEC01<3:0>:** Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

x = Bit is unknown

23.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/36/44-pin Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains three comparators that can be configured in a variety of ways.

Following are some of the key features of this module:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 23-1.

FIGURE 30-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typical ⁽²⁾ Max. Units Condition				
OC10	TccF	OCx Output Fall Time	ns See paramet				See parameter DO32
OC11	TccR	OCx Output Rise Time	— — ns See parameter DC				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 30-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAF	RACTERIST	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param No.	Symbol	Characteristics ⁽¹⁾	Min Typical ⁽²⁾ Max Units Conc				Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

NOTES:

PIC32MX1XX/2XX 28/36/44-PIN FAMILY

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

Revision G (April 2015)

This revision includes the addition of the following devices:

- PIC32MX130F256B
 PIC32MX230F256B
- PIC32MX130F256D PIC32MX230F256D

The title of the document was updated to avoid confusion with the PIC32MX1XX/2XX/5XX 64/100-pin Family data sheet.

TABLE A-6: MAJOR SECTION UPDATES

All peripheral SFR maps have been relocated from the Memory chapter to their respective peripheral chapters.

In addition, this revision includes the following major changes as described in Table A-6, as well as minor updates to text and formatting, which were incorporated throughout the document.

Section	Update Description	
32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with Audio and Graphics Interfaces, USB, and Advanced Analog	Added new devices to the family features (see Table 1 and Table 2). Updated pin diagrams to include new devices (see Pin Diagrams).	
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Updated these sections: 2.2 "Decoupling Capacitors", 2.3 "Capacitor on Internal Voltage Regulator (VCAP)", 2.4 "Master Clear (MCLR) Pin", 2.8.1 "Crystal Oscillator Design Consideration"	
4.0 "Memory Organization"	Added Memory Map for new devices (see Figure 4-6).	
14.0 "Watchdog Timer (WDT)"	New chapter created from content previously located in the Special Features chapter.	
30.0 "Electrical Characteristics"	Removed parameter D312 (TSET) from the Comparator Specifications (see Table 30-12).	
	Added the Comparator Voltage Reference Specifications (see Table 30-13).	
	Updated Table 30-12.	

Revision H (July 2015)

This revision includes the following major changes as described in Table A-7, as well as minor updates to text and formatting, which were incorporated throughout the document.

TABLE A-7: MAJOR SECTION UPDATES

Section	Update Description	
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Section 2.9 "Sosc Design Recommendation" was removed.	
8.0 "Oscillator Configuration"	The Primary Oscillator (Posc) logic in the Oscillator diagram was updated (see Figure 8-1).	
30.0 "Electrical Characteristics"	The Power-Down Current (IPD) DC Characteristics parameter DC40k was updated (see Table 30-7).	
	Table 30-9: "DC Characteristics: I/O Pin Input Injection current Specifications" was added.	