E. Renesas Electronics America Inc - UPD70F3779GF-GAT-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CSI, EBI/EMI, Ethernet, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	76K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3779gf-gat-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(3) Port 9 mode control register (PMC9)

After res	set: 0000H	R/W	Address	: PMC9 FF PMC9L F		I, PMC9H I	FFFF453	н	
	15	14	13	12	11	10	9	8	
PMC9 (PMC9H)	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98	
	7	6	5	4	3	2	1	0	
(PMC9L)	PMC97	PMC96	PMC95	PMC94	PMC93	PMC92	PMC91	PMC90	
	PMC915		Spec	cification of	P915 pin o	operation m	node		
	0	I/O port							
	1	SCKF3 I/C	D/TIAA51 ir	nput/TOAA	51 output/A	A15 output			
	PMC914		Spec	cification of	P914 pin o	operation m	node		
	0	I/O port							
	1	SOF3 outp	out/RXDB1	input/INTF	20 input/A	14 output			
	PMC913		Spec	cification of	P913 pin o	operation m	node		
	0	I/O port							
	1	SIF3 input	/TXDB1 ou	utput/INTP1	9 input/A1	3 output			
	PMC912		Spec	cification of	P912 pin o	operation m	node		
	0	I/O port							
	1	TOAB1OFF input/INTP18 input/A12 output							
	PMC911		Spec	cification of	P911 pin o	operation m	node		
	0	I/O port							
	1	SCKE1 I/C		nput/TOAA					
	PMC910		Spec	cification of	P910 pin o	operation m	node		
	0	I/O port SOE1 out	out/RXDC5	5 input/SCL	.03 I/O/A10	output			
	PMC99		Spe	cification o	f P99 pin o	peration m	ode		
	0	I/O port				-			
	1	SIE1 input	/TXDC5 oi	utput/SDA0	3 I/O/A9 o	utput			
	PMC98		Spe	cification o	f P98 pin o	peration m	ode		
	0	I/O port							
	1	TENC01 in	nput/INTP1	7 input/A8	output				
Remarks 1.		•							
			-	-			-	the PMC9 ritten in 8-b	-
2.	To read/	write bits 7 of the P			9 registe	r in 8-bit c	or 1-bit un	iits, specify	them a

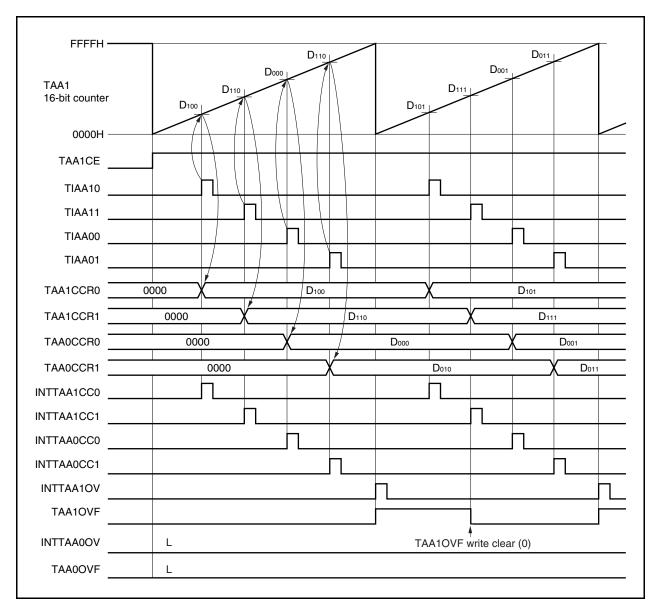


Figure 7-45. Example of Timing in Free-Running Mode (Capture Function)

If the set value of the TABnCCRk register is greater than the set value of the TABnCCR0 register, the count value of the 16-bit counter does not match the value of the TABnCCRk register. Consequently, the INTTABnCCk signal is not generated, nor is the output of the TOABnk pin changed.

Remark k = 1 to 3, n = 0, 1

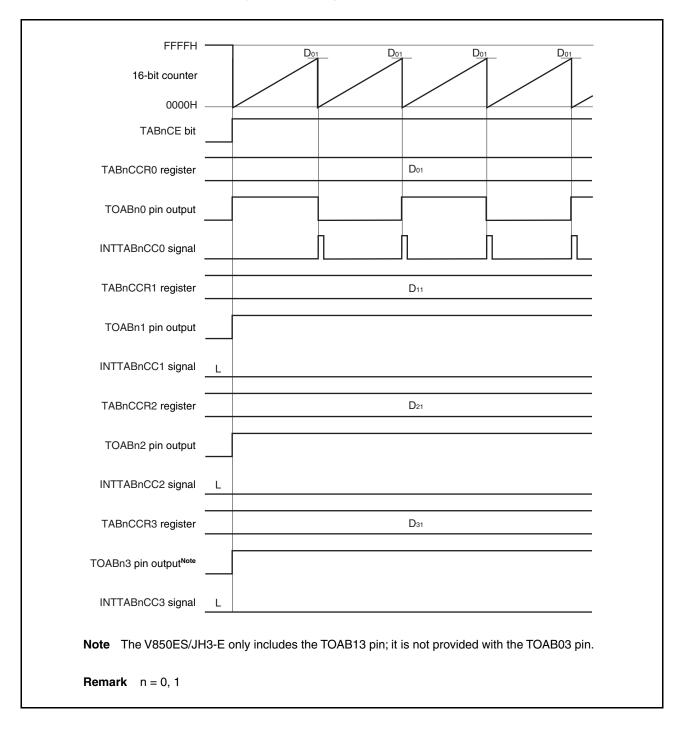


Figure 8-8. Timing Chart When Do1 < Dk1

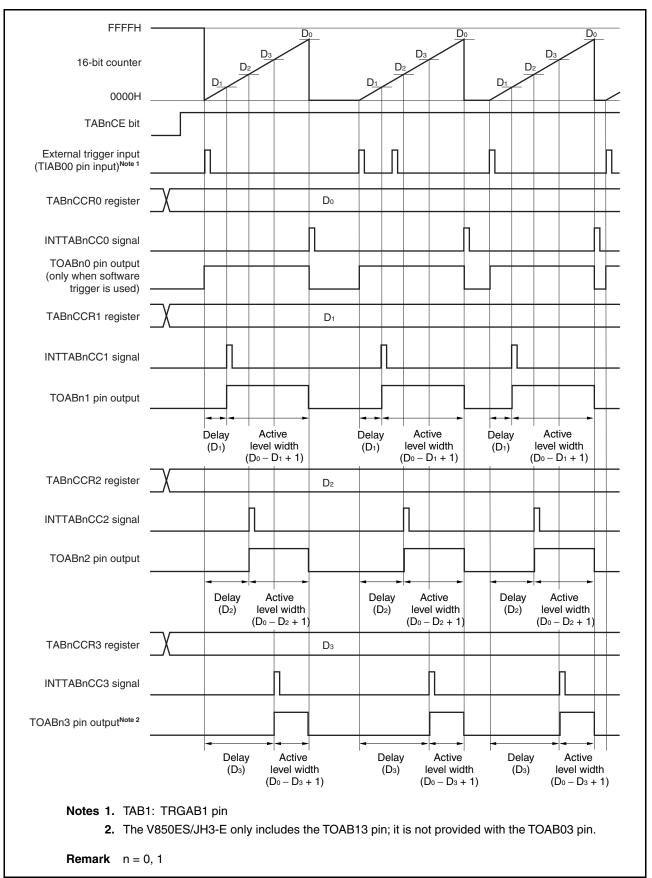


Figure 8-21. Basic Timing in One-Shot Pulse Output Mode

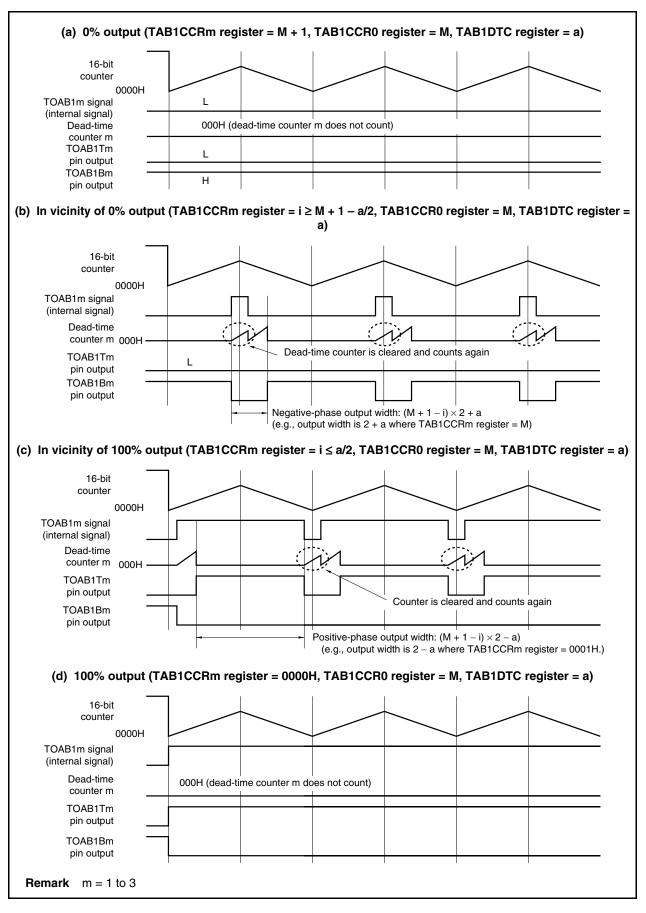
(1) TAB1 dead-time compare register (TAB1DTC)

The TAB1DTC register is a 10-bit compare register that specifies the dead-time value. Rewriting this register is prohibited when the TAB1CTL0.TAB1CE bit = 1. This register can be read or written in 16-bit units. Reset sets this register to 0000H.

Caution When generating a dead-time period, set the TAB1DTC register to 1 or higher.

Note, when the operation is stopped (TAB1CTL0.TAB1CE bit = 0), a dead-time period is not generated, so the output levels of the TOAB1T1 to TOAB1T3 and TOAB1B1 to TOAB1B3 pins are in their default states. Therefore, for the protection of the system, take measures such as making the TOAB1T1 to TOAB1T3 and TOAB1B1 to TOAB1B3 pins go into a high-impedance state before stopping operation, or setting the output levels of the pins before switching port modes. When a dead-time period is not needed, set the TAB1DTC register to 0.

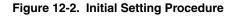
After reset:	0000H R/W	Address	FFFF584H		
	15	10	9	0	
TAB1DTC	0000	00	TAB1DTC9 to TAB1DTC0		

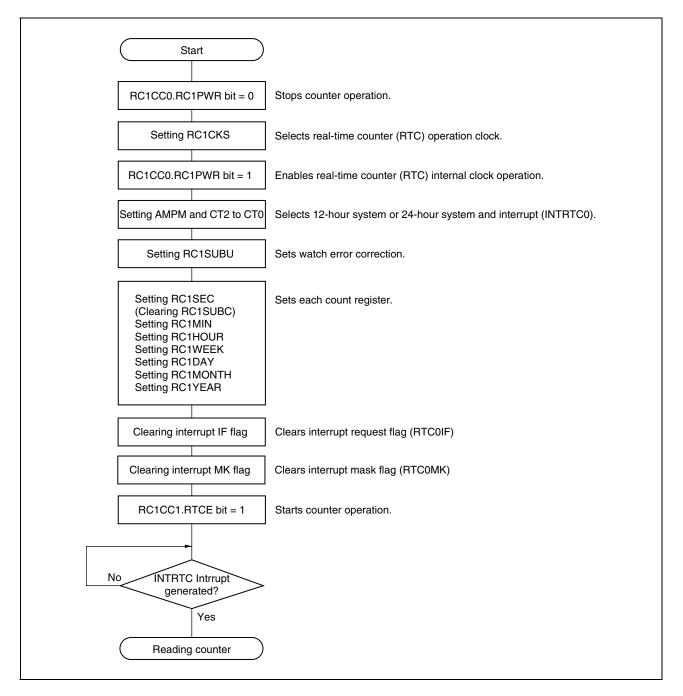

(2) Dead-time counters 1 to 3

The dead-time counters are 10-bit counters that count dead time.

These counters are cleared or count up at the rising or falling edge of the TOAB1m output signal of TAB1, and are cleared or stopped when their count value matches the value of the TAB1DTC register. The count clock of these counters is the same as that set by the TAB1CTL0.TAB1CKS2 to TAB1CTL0.TAB1CKS0 bits of TAB1.

- **Remarks 1.** The operation differs when the TAB1OPT2.TAB1DTM bit = 1. For details, see **11.4.2 (4)** Automatic dead-time width narrowing function (TAB1OPT2.TAB1DTM bit = 1).
 - **2.** m = 1 to 3





12.4 Operation

12.4.1 Initial settings

The initial settings are set when operating the watch function and performing a fixed-cycle interrupt operation.

16.7.5 Reception error

In the single mode (UBnFIC0.UBnMOD bit = 0), the three types of errors that can occur during a receive operation are a parity error, framing error, and overrun error. In the FIFO mode (UBnFIC0.UBnMOD bit = 1), the three types of errors that can occur during a receive operation are a parity error, framing error, and overflow error.

As a result of data reception, the UBnSTR.UBnPE, UBnSTR.UBnFE, or UBnSTR.UBnOVE bit is set to 1 if a parity error, framing error, or overrun error occurs in the single mode. The UBnSTR.UBnOVF bit is set to 1 if an overflow error occurs in the FIFO mode. The UBnRXAP.UBnPEF or UBnRXAP.UBnFEF bit is set to 1 if a parity error or framing error occurs in the FIFO mode. At the same time, a reception error interrupt request signal (INTUBnTIRE) occurs. The contents of the error can be detected by reading the contents of the UBnSTR or UBnRXAP register.

The contents of the UBnSTR register are reset when 0 is written to the UBnOVF, UBnPE, UBnFE, or UBnOVE bit, or the UBnCTL0.UBnPWR or UBnCTL0.UBnRXE bit. The contents of the UBnRXAP register are reset when 0 is written to the UBnCTL0.UBnPWR bit.

Error Flag	Valid Operation Mode	Error Flag	Reception Error	Cause
UBnPE	Single mode	UBnPE	Parity error	The parity specification during transmission does not match the parity of the receive data
UBnFE		UBnFE	Framing error	No stop bit detected
UBnOVE		UBnOVE	Overrun error	The reception of the next data is ended before data is read from the UBnRX register
UBnOVF	FIFO mode	UBnOVF	Overflow error	The reception of the next data is ended while receive FIFO is full and before data is read.
UBnPEF		UBnPEF	Parity error	The parity specification during transmission does not match the parity of the data to be received.
UBnFEF		UBnFEF	Framing error	The stop bit is not detected when the target data is loaded.

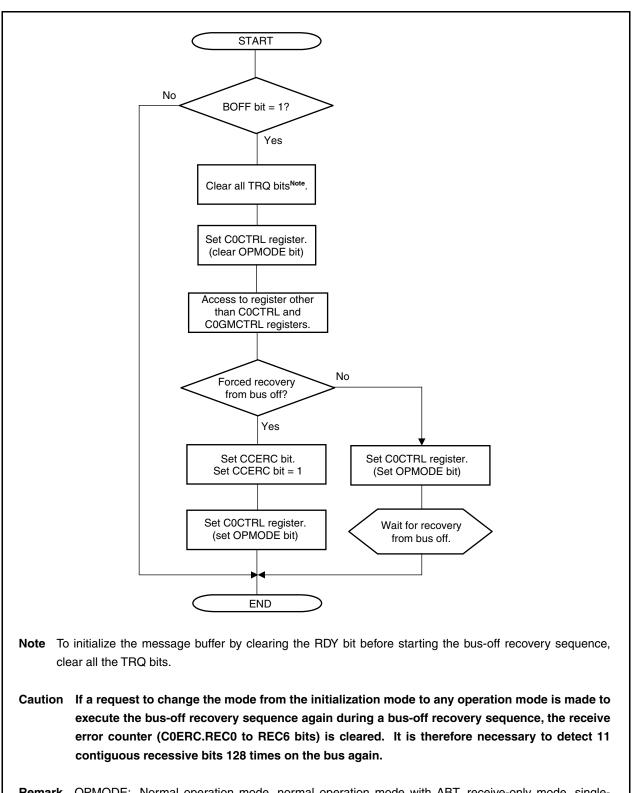
Table 16-5. Reception Error Causes

Remark n = 0, 1

(1) Settin	g of CSIF4							
	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
PMC3			1	1	1			
			SCKF4	SOF4	SIF4			
	PFC37	PFC36	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
PFC3			0	0	0			
			SCKF4	SOF4	SIF4			
	PFCE37	PFCE36	PFCE35	PFCE34	PFCE33	PFCE32	PFCE31	PFCE30
PFCE3			0	0	0			
			SCKF4	SOF4	SIF4			
(2) Settin	g of UARTB	0						
	PMCDH7	PMCDH6	PMCDH5	PMCDH4	PMCDH3	PMCDH2	PMCDH1	PMCDH0
PMCDH				1	1			
				RXDB0	TXDB0			
			PFCDH5	PFCDH4	PFCDH3	PFCDH2	PFCDH1	PFCDH0
PFCDH				0	0			
				RXDB0	TXDB0			
				PFCEDH4	PFCEDH3	1		
PFCEDH				1	1			
				RXDB0	TXDB0			

Figure 19-6. CSIF4 and UARTB0 Mode Switch Settings

	llCCLr		Selection Clock	Transfer	Settable Main Clock	Transfer Speed	Operating
SMCn	CLn1	CLn0		CIOCK	Frequency (fxx) Range		Mode
0	0	0	fxx/6 (OCKS0 = 11H)	fxx/264	24.00 MHz \leq fxx \leq 25.14 MHz	90.91 kHz to 95.23 kHz	Standard
			fxx/8 (OCKS0 = 12H)	fxx/352	24.00 MHz \leq fxx \leq 33.52 MHz	68.18 kHz to 95.23 kHz	mode (SMCn = 0
			fxx/10 (OCKS0 = 13H)	fxx/440	30.00 MHz \leq fxx \leq 41.90 MHz	68.18 kHz to 95.23 kHz	
			fxx/2 (OCKS0 = 18H)	fxx/88	$4.00 \text{ MHz} \le \text{fxx} \le 6.25 \text{ MHz}$	45.45 kHz to 71.02 kHz	
0	0	1	fxx/4 (OCKSm = 10H)	fxx/344	24.00 MHz \leq fxx \leq 33.52 MHz	69.77 kHz to 97.44 kHz	
			fxx/6 (OCKSm = 11H)	fxx/516	25.14 MHz \leq fxx \leq 50.00 MHz	48.72 kHz to 96.90 kHz	
			fxx/8 (OCKSm = 12H)	fxx/688	33.52 MHz \leq fxx \leq 50.00 MHz	48.72 kHz to 72.67 kHz	
			fxx/10 (OCKSm = 13H)	fxx/860	41.90 MHz \leq fxx \leq 50.00 MHz	48.72 kHz to 58.14 kHz	
0	1	1	fxx/4 (OCKSm = 10H)	fxx/264	25.60 MHz	96.97 kHz	
			fxx/6 (OCKSm = 11H)	fxx/396	38.40 MHz	96.97 kHz	
1	0	х	fxx/4 (OCKSm = 10H)	fxx/96	24.00 MHz \leq fxx \leq 33.52 MHz	250.00 kHz to 349.17 kHz	High-speed
			fxx/6 (OCKSm = 11H)	fxx/144	24.00 MHz \leq fxx \leq 50.00 MHz	166.67 kHz to 347.22 kHz	mode (SMCn = 1
			fxx/8 (OCKSm = 12H)	fxx/192	32.00 MHz \leq fxx \leq 50.00 MHz	166.67 kHz to 260.42 kHz	
			fxx/10 (OCKSm = 13H)	fxx/240	40.00 MHz \leq fxx \leq 50.00 MHz	166.67 kHz to 208.33 kHz	
1	1	1	fxx/4 (OCKSm = 10H)	fxx/72	25.60 MHz	355.56 kHz	
			fxx/6 (OCKSm = 11H)	fxx/108	38.40 MHz	355.56 kHz	
1	0	х	fxx/6 (OCKSm = 11H)	fxx/72	24.00 MHz \leq fxx \leq 25.14 MHz	333.33 kHz to 349.17 kHz	
			fxx/8 (OCKSm = 12H)	fxx/96	32.00 MHz \leq fxx \leq 33.52 MHz	333.33 kHz to 349.17 kHz	
			fxx/10 (OCKSm = 13H)	fxx/120	40.00 MHz \leq fxx \leq 41.90 MHz	333.33 kHz to 349.17 kHz	
than a	above		Setting prohibited	-	_	_	_
	SMCn 0 0 1 1	SMCn CLn1 0 0 0 0 0 1 1 0 1 1	0 0 1 0 1 1 1 0 X 1 1 1 1 0 X	$ \frac{SMCn}{CLn1} \frac{CLn1}{CLn0} = \frac{SMCn}{CLn1} \frac{CLn1}{CLn0} = \frac{SMCn}{CKS0} = \frac{11H}{Fxx/8} \frac{Fxx/6}{Fxx/8} \frac{Fxx/6}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/8} \frac{Fxx/8}{Fxx/10} \frac{Fxx/8}{Fxx/8} \frac{Fxx/8}{Fxx/8$	$ \frac{SMCn}{CLn1} \frac{CLn0}{CLn0} \qquad \qquad$	$ \frac{3MCn}{CLn1} \frac{CLn0}{CLn0} $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


Remarks 1. n = 0 to 3 (V850ES/JH3-E)

n = 0 to 4 (V850ES/JJ3-E)

m = 0 to 2

2. \times : don't care

Figure 21-54. Bus-off Recovery (Other Than in Normal Operation Mode with ABT)

Remark OPMODE: Normal operation mode, normal operation mode with ABT, receive-only mode, singleshot mode, self-test mode

22.4 Cautions

(1) Clock accuracy

To operate the USB function controller, the internal clock (6 MHz external clock × internal clock multiplied by 8 = 48 MHz internal clock) or external clock (external clock input to EXCLK pin (fuse = 48 MHz)) must be used as the USB clock. When the internal clock is used as the USB clock, use a resonator with an accuracy of 6 MHz ±500 ppm (max.). When the external clock is used, apply a clock with an accuracy of 48 MHz ±500 ppm (max.) to the EXCLK pin. If the USB clock accuracy drops, the transmission data cannot satisfy the USB rating.

(2) Stopping the USB clock

When the main clock (fxx) has been selected as the USB function controller clock and it is necessary to stop the USB function controller, be sure to stop the USB function controller (by setting bits 1 and 0 of the UFCKMSK register to 1) first before stopping the main clock (fxx).

If the main clock (fxx) is stopped without first stopping the USB function controller, a malfunction might occur due to noise in the clock pulse when the main clock (fxx) is restarted.

Similarly, when an external clock whose signal is input from the EXCLK pin is selected as the USB function controller clock, measures must be taken to prevent noise from being generated in the clock pulse by the external circuit. If this is not feasible, then the USB function controller must be stopped first before stopping the main clock (fxx).

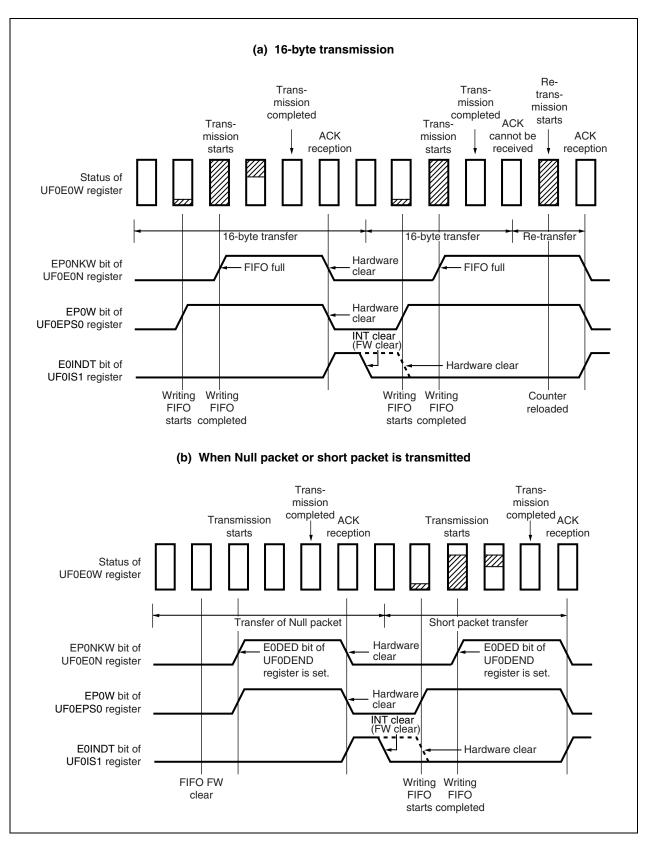


Figure 22-6. Operation of UF0E0W Register

(3) UF0 EP1 status register L (UF0E1SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint1 request.

This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

If an error occurs in Endpoint1, the E1HALT bit is set to 1. A write access to this register is ignored while a USBside access to Endpoint1 is being received.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint1 request. If Endpoint1 has stalled, the UF0BI1 register is cleared and the BKI1NK bit is cleared to 0.

Because writing this register is always masked when transfer to Endpoint1, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

Caution To rewrite this register, set the EP0NKA bit to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access and a write access.

	7	6	5	4	3	2	1	0	Address	After reset
UF0E1SL	0	0	0	0	0	0	0	E1HALT	00200150H	00H
Bit position	E	Bit name					Function			
0	E1H	IALT	1: Si 0: No This bit received SET_CO	alled ot stalled is set to 1 d. It is clea ONFIGUR/	by hardwar red to 0 by ATION requ	hardware v lest, or the	SET_FE	CLEAR_FEA ERFACE req	point1 request h TURE Endpoin uest for the Inte PID is initialized	t1 request, rface to

(16) RJBR: Receive jabber counter

Access	This register can be read and written in 32-bit units.
--------	--

Address 002E 017CH

Default value 0000 0000H. This register is cleared to its default value by all types of resets.

31	30	29	28	27	26	25	24
RJBR31	RJBR30	RJBR29	RJBR28	RJBR27	RJBR26	RJBR25	RJBR24
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
23	22	21	20	19	18	17	16
RJBR23	RJBR22	RJBR21	RJBR20	RJBR19	RJBR18	RJBR17	RJBR16
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
15	14	13	12	11	10	9	8
RJBR15	RJBR14	RJBR13	RJBR12	RJBR11	RJBR10	RJBR9	RJBR8
RJBR15 R/W	RJBR14 R/W	RJBR13 R/W	RJBR12 R/W	RJBR11 R/W	RJBR10 R/W	RJBR9 R/W	RJBR8 R/W
	-		-	-			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Name	Description
31 to 0	RJBR[31:0]	This counter is incremented if the receive packet length exceeds 1,518 bytes (1,522 bytes when a VLAN frame is received) and the packet contains a CRC error or an alignment error.
		If a packet exceeding the length set to the LMAX register is received when the MACC1.HUGEN bit is set to 0, a CRC check is executed as soon as the set value of the LMAX register has been reached. Consequently, a CRC error may be detected at that point and this counter may not be incremented.

(30) TXPF: Transmit pause control frame counter

- Access This register can be read and written in 32-bit units.
- Address 002E 01D8H

Default value 0000 0000H. This register is cleared to its default value by all types of resets.

31	30	29	28	27	26	25	24
TXPF31	TXPF30	TXPF29	TXPF28	TXPF27	TXPF26	TXPF25	TXPF24
R/W							
23	22	21	20	19	18	17	16
TXPF23	TXPF22	TXPF21	TXPF20	TXPF19	TXPF18	TXPF17	TXPF16
R/W							
15	14	13	12	11	10	9	8
TXPF15	TXPF14	TXPF13	TXPF12	TXPF11	TXPF10	TXPF9	TXPF8
R/W							
7	6	5	4	3	2	1	0
	0	5	4	0	2	I	0
TXPF7	TXPF6	TXPF5	TXPF4	TXPF3	TXPF2	TXPF1	TXPF0

Bit	Name	Description			
31 to 0	TXPF[31:0]	This counter is incremented each time a pause control frame has been transmitted when the maximum amount of data has been stored in the receive FIFO.			

27.5 IDLE2 Mode

27.5.1 Setting and operation status

The IDLE2 mode is set by setting the PSMR.PSM1 and PSMR.PSM0 bits to 10 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE2 mode, the clock oscillator continues operation but clock supply to the CPU, PLL, flash memory, and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE2 mode was set are retained. The CPU, PLL, and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock or an external clock continue operating.

Table 27-7 shows the operating status in the IDLE2 mode.

The IDLE2 mode can reduce the power consumption more than the IDLE1 mode because it stops the operations of the on-chip peripheral functions, PLL, and flash memory. However, because the PLL and flash memory are stopped, a setup time for the PLL and flash memory is required when IDLE2 mode is released.

Cautions 1. Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE2 mode.

2. If the IDLE2 mode is set while an unmasked interrupt request signal is being held pending, the IDLE2 mode is released immediately by the pending interrupt request.

CHAPTER 33 FLASH MEMORY

The V850ES/JH3-E and V850ES/JJ3-E incorporate a flash memory.

• μPD70F3778:	256 KB flash memory
• μPD70F3779, 70F3781:	384 KB flash memory
• μPD70F3780, 70F3782, 70F3783, 70F3784, 70F3785, 70F3786:	512 KB flash memory

Flash memory versions offer the following advantages for development environments and mass production applications.

O For altering software after the V850ES/JH3-E and V850ES/JJ3-E are soldered onto the target system.

- O For data adjustment when starting mass production.
- O For differentiating software according to the specification in small scale production of various models.
- O For facilitating inventory management.
- O For updating software after shipment.

33.1 Features

- O 4-byte/1-clock access (when instruction is fetched)
- O Capacity: 256/384/512 KB
- O Rewrite voltage: Erase/write with a single power supply
- O Rewriting method
 - Rewriting by communication with dedicated flash programmer via serial interface (on-board/off-board programming)
 - Rewriting flash memory by user program (self programming)
- O Flash memory rewrite prohibit function supported (security function)
- O Safe rewriting of entire flash memory area by self programming using boot swap function
- O Interrupts can be acknowledged during self programming.

Flash	-	Programmer (FG-FP5) Name of CSIF0 + HS Connection Pin FA Board			IS Used	CSIF0 Used		UARTC0 Used	
Signal Name	I/O	Pin Function	Pin	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	SI	P41/SOF0	4	P41/SOF0	4	P30/TXDC0	25
SO/TxD	Output	Transmit signal	SO	P40/SIF0	3	P40/SIF0	3	P31/RXDC0	26
SCK	Output	Transfer clock	SCK	P42/SCKF0	5	P42/SCKF0	5	Not needed	_
CLK	Output	Clock to	X1	Not needed	_	Not needed	_	Not needed	_
		V850ES/JH3-E	X2	Not needed	-	Not needed	-	Not needed	-
/RESET	Output	Reset signal	/RESET	RESET	18	RESET	18	RESET	18
FLMD0	Output	Write voltage	FLMD0	FLMD0	12	FLMD0	12	FLMD0	12
FLMD1	Output	Write voltage	FLMD1	PDL5/AD5/ FLMD1	92	PDL5/AD5/ FLMD1	92	PDL5/AD5/ FLMD1	92
HS	Input	Handshake signal for CSI0 + HS communication	RESERVE/ HS	P20	38	Not needed	_	Not needed	_
VDD	_	VDD voltage	VDD	VDD	13, 82	VDD	13, 82	VDD	13, 82
		generation/ voltage monitor		EVDD	35, 61, 85, 102, 118	EVDD	35, 61, 85, 102, 118	EVDD	35, 61, 85, 102, 118
				UVDD	11	UVDD	11	UVDD	11
				AV _{REF0}	1	AV _{REF0}	1	AV _{REF0}	1
GND	-	Ground	GND	Vss	15, 34, 60, 84, 101, 117	Vss	15, 34, 60, 84, 101, 117	Vss	15, 34, 60, 84, 101, 117
				AVss	2	AVss	2	AVss	2

Table 33-6. Wiring of V850ES/JH3-E Flash Writing	g Adapters (FA-128GF-GAT-B) (1/2)
--	-----------------------------------

Cautions 1. Be sure to connect the REGC pin to GND via 4.7 μ F (recommend value) capacitor.

2. Clock cannot be supplied from the CLK pin of the flash programmer. Create an oscillator on the board and supply clock.

CHAPTER 37 RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, please contact a Renesas Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.renesas.com/prod/package/index.html)

Remark Evaluation of the soldering conditions for the (A) standard products is incomplete because these products are under development.

Table 37-1. Surface Mounting Type Soldering Conditions

 $\label{eq:pdf} \begin{array}{l} \mu \text{PD70F3778GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3779GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3780GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3781GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3782GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})} \\ \mu \text{PD70F3783GF-GAT-AX: 128-pin plastic LQFP (fine pitch) (14 \times 20 \text{ mm})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with –AX at the end of the part number are lead-free products.

2. For soldering methods and conditions other than those recommended, please contact a Renesas Electronics sales representative.

