E. Renesas Electronics America Inc - UPD70F3783GF-GAT-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, CSI, EBI/EMI, Ethernet, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	84
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	124К х 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3783gf-gat-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	19.6.12 Continuous transfer mode (slave mode, transmission/reception mode)	935
	19.6.13 Reception error	939
	19.6.14 Clock timing	940
19.7	Output Pins	
19.8	Baud Rate Generator	
	19.8.1 Baud rate generation	944
19.9	Cautions	
CHAPTEI	R 20 I²C BUS	
20.1	Features	
20.2	Configuration	
20.3	Mode Switching of I ² C Bus and Other Serial Interfaces	
	20.3.1 Mode switching between I ² C00, CSIF1, and UARTC1	951
	20.3.2 Mode switching between I ² C01, CSIF0, and UARTC3	952
	20.3.3 Mode switching between I ² C02, UARTC2, and CAN0	953
	20.3.4 Mode switching between I ² C03, CSIE1, and UARTC5	954
20.4	Registers	
20.5	I ² C Bus Mode Functions	970
	20.5.1 Pin configuration	
20.6	I ² C Bus Definitions and Control Methods	
	20.6.1 Start condition	972
	20.6.2 Addresses	973
	20.6.3 Transfer direction specification	974
	20.6.4 ACK	975
	20.6.5 Stop condition	976
	20.6.6 Wait state	977
	20.6.7 Wait state cancellation method	979
20.7	I ² C Interrupt Request Signals (INTIICn)	980
	20.7.1 Master device operation	980
	20.7.2 Slave device operation (when receiving slave address data (address match))	983
	20.7.3 Slave device operation (when receiving extension code)	987
	20.7.4 Operation without communication	990
	20.7.5 Arbitration loss operation (operation as slave after arbitration loss)	991
	20.7.6 Operation when arbitration loss occurs (no communication after arbitration loss)	993
20.8	Interrupt Request Signal (INTIICn) Generation Timing and Wait Control	1000
20.9	Address Match Detection Method	1002
20.1) Error Detection	1002
20.1	I Extension Code	1002
20.12	2 Arbitration	1003
20.13	3 Wakeup Function	1004
20.14	Communication Reservation	1005
	20.14.1 When communication reservation function is enabled (IICFn.IICRSVn bit = 0)	
	20.14.2 When communication reservation function is disabled (IICFn.IICRSVn bit = 1)	1009
20.1	5 Cautions	1010

(4) Port n function control register (PFCn)

The PFCn register specifies the alternate function of a port pin to be used if the pin has two alternate functions. Each bit of this register corresponds to one pin of port n, and the alternate function of a port pin can be specified in 1-bit units.

(5) Port n function control expansion register (PFCEn)

The PFCEn register specifies the alternate function of a port pin to be used if the pin has three or more alternate functions.

Each bit of this register corresponds to one pin of port n, and the alternate function of a port pin can be specified in 1-bit units.

(a) T/	۹An o	cont	rol regis	ter 0 (TA	AnCTL0)					
	ΤΔΔ	nCF					TAAnCKS	S2 TAAnCKS	1 TAAnCK	50
TAAnCTL0	0/	/1	0	0	0	0	0/1	0/1	0/1	
			-	-						
										 Select count clock
										0: Stops counting
										1: Enables counting
(b) T/	۹An و	cont	rol regis	ter 1 (TA/	AnCTL1)					
			-		_		T 4 4 1 4 5		T	
		<u> </u>	IAANES		=	0				
TAAIIOTEI		,	0/1	0	0	0				
										0, 1, 0: — External trigger pulse
										output mode
										Generates software trigger
(c) T/	۹An I	/O c	ontrol re	gister 0 (TAAnIOC	0)				
						TAAnOL1	TAAnOE1	TAAnOL0 1	AAnOE0	
TAAnIOC0	0		0	0	0	0/1	0/1	0/1 ^{Note}	0/1 ^{Note}	
ľ		1								0: Disables TOAAn0 pin output 1: Enables TOAAn0 pin output
									:	Sets output level while operation
										of TOAAn0 pin is disabled 0: Low level 1: High level
										0: Disables TOAAn1 pin output
									:	Specifies active level of
										TOAAn1 pin output 0: Active-high 1: Active-low
• When	n TAA	nOL1	l bit = 0				• When	FAAnOL1 bit	= 1	
	40.1		1		/ /	1		10	_ 1	
	16-b	. ot cou				\lor		16-bit counte	er	
104	۹An1 p	oin ol	utput			J	IOAA	n1 pin outpu	π <u> </u>	
N	ote	Clea	ar this bit	to 0 wher	the TOAA	n0 pin is	not used	in the exte	ernal trig	ger pulse output mode.

Figure 7-23. Setting of Registers in External Trigger Pulse Output Mode (1/2)

(c) Generation timing of compare match interrupt request signal (INTTAAnCC1)

The timing of generation of the INTTAAnCC1 signal in the PWM output mode differs from the timing of other INTTAAnCC1 signals; the INTTAAnCC1 signal in the PWM output mode is generated when the count value of the 16-bit counter matches the value of the TAAnCCR1 register.

Usually, the INTTAAnCC1 signal is generated in synchronization with the next count-up after the count value of the 16-bit counter matches the value of the TAAnCCR1 register.

In the PWM output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the output signal of the TOAAn1 pin.

(5) TABn I/O control register 2 (TABnIOC2)

The TABnIOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIAB00/EVTAB1 pin) and external trigger input signal (TIAB00/TRGAB1 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

	7	6	5	4	3	2	1	0
TABnIOC2	0	0	0	0	TABnEES1	TABnEES0 TA	BnETS1	TABnETSC
(n = 0, 1)								
	TABnEES1	TABnEES0	External ev	ent count	input signal (TIA	B00/EVTAB1 p	oin) valid ed	dge setting
	0	0	No edge o	detectior	n (external eve	nt count inva	alid)	
	0	1	Detection	of rising	g edge			
	1	0	Detection	of falling	g edge			
	1	1	Detection	of both	edges			
	TABnETS1	TABnETS0	External tri	gger inpu	ut signal (TIAB00)/TRGAB1 pin) valid edg	ge setting
	0	0	No edge o	detectior	n (external trigg	ger invalid)		
	0	1	Detection	of rising	g edge			
	1	0	Detection	of falling	g edge			
	1	1	Detection	of both	odaoo			
	Cautions	s 1. Rew	rite the	TABn	EES1, TAB	nEES0, T	ABnET	S1, and
	Cautions	s 1. Rew TAB sam rewr to 0 2. The	rite the nETS0 bit e value c iting was and then TABnEES	TABn ts when an be mistal set the S1 and	EES1, TAB n the TABnC written whe kenly perfor bits again. I TABnEES0	nEES0, 1 CTL0.TABn n the TAB med, clear bits are	ABnETS CE bit = nCE bit the TAE valid on	S1, and = 0. (The ∷ = 1.) I BnCE bi ily wher

(a) Setting procedure

(i) Setting of high-impedance control operation

- <1> Set the HZA0DCMn, HZA0DCNn, and HZA0DCPn bits.
- <2> Set the HZA0DCEn bit to 1 (enable high-impedance control).

(ii) Changing setting after enabling high-impedance control operation

- <1> Clear the HZA0DCEn bit to 0 (to stop the high-impedance control operation).
- <2> Change the setting of the HZA0DCMn, HZA0DCNn, and HZA0DCPn bits.
- <3> Set the HZA0DCEn bit to 1 (to enable the high-impedance control operation again).

(iii) Resuming output when pins are in high-impedance state

If the HZA0DCMn bit is 1, set the HZA0DCCn bit to 1 to clear the high-impedance state after the valid edge of the external pin is detected. However, the high-impedance state cannot be cleared unless this bit is set while the input level of the external pin is inactive.

- <1> Set the HZA0DCCn bit to 1 (command signal to clear the high-impedance state).
- <2> Read the HZA0DCFn bit and check the flag status.
- <3> Return to <1> if the HZA0DCFn bit is 1. The input level of the external pin must be checked. The pin can function as an output pin if the HZA0DCFn bit is 0.

(iv) Making pin go into high-impedance state by software

The HZA0DCTn bit must be set to 1 by software to make the pin go into a high-impedance state while the input level of the external pin is inactive. The following procedure is an example in which the setting is not dependent upon the setting of the HZA0DCMn bit.

- <1> Set the HZA0DCTn bit to 1 (high-impedance output command).
- <2> Read the HZA0DCFn bit to check the flag status.
- <3> Return to <1> if the HZA0DCFn bit is 0. The input level of the external pin must be checked. The pin is in a high-impedance state if the HZA0DCFn bit is 1.

However, if the external pin is not used with the HZA0DCPn bit and HZA0DCNn bit cleared to 0, the pin goes into a high-impedance state when the HZA0DCTn bit is set to 1.

Remark n = 0, 1

13.2 Configuration

The following shows the block diagram of watchdog timer 2.

Watchdog timer 2 includes the following hardware.

Table 13-1. Configuration of Watchdog Timer 2

Item	Configuration
Control registers	Watchdog timer mode register 2 (WDTM2) Watchdog timer enable register (WDTE)

(5) A/D conversion result registers n, nH (ADA0CRn, ADA0CRnH)

The ADA0CRn and ADA0CRnH registers store the A/D conversion results.

These registers are read-only, in 16-bit or 8-bit units. However, the ADA0CRn register is used for 16-bit access and the ADA0CRnH register for 8-bit access. The 10 bits of the conversion result are read to the higher 10 bits of the ADA0CRn register, and 0 is read to the lower 6 bits. The higher 8 bits of the conversion result are read to the ADA0CRnH register.

Caution Accessing the ADA0CRn and ADA0CRnH registers is prohibited in the following statuses.

- For details, see 3.4.9 (2) Accessing specific on-chip peripheral I/O registers.
- When the CPU operates on the subclock and the main clock oscillation is stopped

When the CPU operates on the internal oscillation clock

(ii) During reception (reading from receive FIFO)

If data for the first reception end interrupt request signal (INTUBnTIR) is not read from receive FIFO, the second INTUBnTIR signal does not occur (is held pending) even if the generation condition of the second INTUBnTIR is satisfied (if receive data of the number set as the trigger by the UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits can be read from receive FIFO). When data for the first INTUBnTIR signal is later read from the receive FIFO, the pending INTUBnTIR signal is generated^{Note}.

Note The number of pending interrupts is as follows.

When trigger is set to 1 byte (UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits = 0000): 15 times max. When trigger is set to 2 bytes (UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits = 0001): 7 times max.

When trigger is set to 6 bytes (UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits = 0101): 1 time max. When trigger is set to 7 bytes (UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits = 0110): 1 time max. When trigger is set to 8 bytes (UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits = 0111): 1 time max.

- In the pending mode, receive data of the number set as the trigger by the UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits is always read from receive FIFO when the reception end interrupt request signal (INTUBnTIR) occurs. Reading data from receive FIFO is prohibited if the data is more or less than the specified number. If data more or less than the specified number is read, the operation is not guaranteed.
- Fix the UBnFIC2.UBnRT3 to UBnFIC2.UBnRT0 bits to 0000 (set number of receive data: 1 byte) to read receive data from receive FIFO by DMA. If any other setting is made, the operation is not guaranteed.

(b) Pointer mode

(i) During transmission (writing to transmit FIFO)

- Each time the data of 1 byte is transferred to the transmit shift register from transmit FIFO, a transmission enable interrupt request signal (INTUBnTIT) occurs.
- In the pointer mode, be sure to fix the UBnFIC2.UBnTT3 to UBnFIC2.UBnTT0 bits to 0000 (set number of transmit data: 1 byte) as the number of transmit data set as the trigger for transmit FIFO when the transmission enable interrupt request signal (INTUBnTIT) occurs. If any other setting is made, the operation is not guaranteed.
- Writing transmit data to transmit FIFO by DMA is prohibited. The operation is not guaranteed if DMA control is used.
- After the transmission enable interrupt request signal (INTUBnTIT) has been acknowledged, data of the number of empty bytes of transmit FIFO can be written to transmit FIFO by referencing the UBnFIS1 register.

Remark n = 0, 1

Figure 18-11. Continuous Mode

19.3.4 Mode switching between CSIF3 and UARTB1

In the V850ES/JH3-E and V850ES/JJ3-E, CSIF3 and UARTB1 share the same pin and therefore cannot be used simultaneously. Set CSIF3 and UARTB1 in advance, using the PMC9, PFC9, and PFCE9 registers, before use.

Caution The transmit/receive operation of CSIF3 and UARTB1 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After r	eset: 0000H	I R/W	Address	: PMC9 PMC9	FFFFF452 L FFFFF45	2H, 52H, PMC9	H FFFF4	53H	
	15	14	13	12	11	10	9	8	
PMC9 (PMC9H)	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98	
	7	6	5	4	3	2	1	0	
(PMC9L)	PMC97	PMC96	PMC95	PMC94	PMC93	PMC92	PMC91	PMC90	
After re	eset: 0000H	R/W	Address	PFC9 PFC9	FFFFF472H . FFFFF472	H, 2H, PFC9H	FFFFF47	3Н	
	15	14	13	12	11	10	9	8	
PFC9 (PFC9H)	PFC915	PFC914	PFC913	PFC912	PFC911	PFC910	PFC99	PFC98	
	7	6	5	4	3	2	1	0	
(PFC9L)	PFC97	PFC96	PFC95	PFC94	PFC93	PFC92	PFC91	PFC90	
After r	eset: 0000H	R/W	Address	PFCES) FFFFF712)L FFFFF7 ⁻	2H, 12H, PFCE 10	9H FFFF	713H 8	
PFCE9 (PFCE9H)	PECE915	PECE914	PECE913	0	PECE911	PECE910	PFCE99	° PECE98	
	7	6	5	4	3	2	1	0	
(PFCE9L)	PFCE97	PFCE96	PFCE95	PFCE94	PFCE93	PFCE92	PFCE91	PFCE90	
	PMC915	PFCE915	PFC915		Oţ	peration mo	ode		
	0	×	×	Port I/O m	node				
	1	0	0	SCKF3 (C	SIF3)				
	PMC914	PFCE914	PFC914		Op	peration mo	ode		
	0	×	×	Port I/O m	node				
	1	0	0	SOF3 (CS	SIF3)				
	1	0	1	RXDB1 (L	JARTB1)				
	PMC913 PECE913 PEC913 Operation mode						ode		
	PMC913	PFCE913	PFC913	0 × × Port I/O mode					
	PMC913 0	PFCE913	×	Port I/O m	node				
	PMC913 0 1	PFCE913 × 0	× 0	Port I/O m SIF3 (CSI	node F3)				

Figure 19-5. CSIF3 and UARTB1 Mode Switch Settings

(a) Transfer data length change function

The CSIFn transfer data length can be set in 1-bit units between 8 and 16 bits using the CFnCTL2.CFnCL3 to CFnCTL2.CFnCL0 bits.

When the transfer bit length is set to a value other than 16 bits, set the data to the CFnTX or CFnRX register starting from the LSB, regardless of whether the transfer start bit is the MSB or LSB. Any data can be set for the higher bits that are not used, but the receive data becomes 0 following serial transfer.

21.9.3 Receive history list function

The receive history list (RHL) function records in the receive history list the number of the receive message buffer in which each data frame or remote frame was received and stored. The RHL consists of storage elements equivalent to up to 23 messages, the last in-message pointer (LIPT) with the corresponding C0LIPT register and the receive history list get pointer (RGPT) with the corresponding C0RGPT register.

The RHL is undefined immediately after the transition of the CAN module from the initialization mode to one of the operation modes.

The C0LIPT register holds the contents of the RHL element indicated by the value of the LIPT pointer minus 1. By reading the C0LIPT register, therefore, the number of the message buffer that received and stored a data frame or remote frame first can be checked. The LIPT pointer is utilized as a write pointer that indicates to what part of the RHL a message buffer number is recorded. Any time a data frame or remote frame is received and stored, the corresponding message buffer number is recorded to the RHL element indicated by the LIPT pointer. Each time recording to the RHL has been completed, the LIPT pointer is automatically incremented. In this way, the number of the message buffer that has received and stored a frame will be recorded chronologically.

The RGPT pointer is utilized as a read pointer that reads a recorded message buffer number from the RHL. This pointer indicates the first RHL element that the CPU has not read yet. By reading the CORGPT register by software, the number of a message buffer that has received and stored a data frame or remote frame can be read. Each time a message buffer number is read from the CORGPT register, the RGPT pointer is automatically incremented.

If the value of the RGPT pointer matches the value of the LIPT pointer, the CORGPT.RHPM bit (receive history list pointer match) is set to 1. This indicates that no message buffer number that has not been read remains in the RHL. If a new message buffer number is recorded, the LIPT pointer is incremented and because its value no longer matches the value of the RGPT pointer, the RHPM bit is cleared. In other words, the numbers of the unread message buffers exist in the RHL.

If the LIPT pointer is incremented and matches the value of the RGPT pointer minus 1, the CORGPT.ROVF bit (receive history list overflow) is set to 1. This indicates that the RHL is full of numbers of message buffers that have not been read. When further message reception and storing occur, the last recorded message buffer number is overwritten by the number of the message buffer that received and stored the new message. After the ROVF bit has been set to 1, the recorded message buffer numbers in the RHL do not completely reflect chronological order. However the messages themselves are not lost and can be located by a CPU search in the message buffer memory with the help of the DN bit.

Caution Even if the receive history list overflows (CORGPT.ROVF bit = 1), the receive history can be read until no more history is left unread and the CORGPT.RHPM bit is set (1). However, the ROVF bit is kept set (1) (= overflow occurs) until cleared (0) by software. In this status, the RHPM bit is not cleared (0), unless the ROVF bit is cleared (0), even if a new receive history is stored and written to the list. If ROVF bit = 1 and RHPM bit = 1 and the receive history list overflows, therefore, the RHPM bit indicates that no more history is left unread even if new history is received and stored.

(g) SET_CONFIGURATION() request

If any of wValue, wIndex, or wLength is other than the values shown in Table 22-3, a STALL response is made in the status stage.

- Default state: The CONF bit of the UF0 mode status register (UF0MODS) and the UF0 configuration register (UF0CNF) are set to 1 if the specified configuration value is 1 when the SET_CONFIGURATION() request has been received. If the specified configuration value is 0, the CONF bit of the UF0MODS register and UF0CNF register are cleared to 0. In other words, the device skips the Addressed state and moves to the Configured state in which it responds to the Default address.
- Addressed state: The CONF bit of the UF0MODS register and UF0CNF register are set to 1 and the device enters the Configured state if the specified configuration value is 1 when the SET_CONFIGURATION() request has been received. If the specified configuration value is 0, the device remains in the Addressed state.
- Configured state: The CONF bit of the UF0MODS register and UF0CNF register are set to 1 and the device returns to the Addressed state if the specified configuration value is 0 when the SET_CONFIGURATION() request has been received. If the specified configuration value is 1, the device remains in the Configured state.

If the SET_CONFIGURATION() request has been correctly processed, the target bit of the UF0 SET request register (UF0SET) is set to 1, and an interrupt is issued. All Halt Features are cleared after the SET_CONFIGURATION() request has been completed even if the specified configuration value is the same as the current configuration value. If the SET_CONFIGURATION() request has been correctly processed, the data toggle of all endpoints is always initialized to DATA0 again (it is defined that the default status, Alternative Setting 0, is set from when the SET_CONFIGURATION request is received to when the SET_INTERFACE request is received).

(h) SET_FEATURE() request

A STALL response is made in the status stage if the SET_FEATURE() request is for a Feature that cannot be set or does not exist, or if the target is an interface or an endpoint that does not exist. A STALL response is also made if the wLength value is other than 0.

- Default state: The correct response is made when the SET_FEATURE() request has been received, only if the request is for a device or Endpoint0; otherwise a STALL response is made in the status stage.
- Addressed state: The correct response is made when the SET_FEATURE() request has been received, only if the request is for a device or Endpoint0; otherwise a STALL response is made in the status stage.
- Configured state: The correct response is made when the SET_FEATURE() request has been received, only if the request is for a device or an endpoint that exists; otherwise a STALL response is made in the status stage.

When the SET_FEATURE() request has been correctly processed, the target bit of the UF0 SET request register (UF0SET) and the EnHALT bit of the UF0 EPn status register L (UF0EnSL) are set to 1, and an interrupt is issued (n = 0 to 4, 7).

(24) UF0 INT clear 3 register (UF0IC3)

This register controls clearing the interrupt sources indicated by the UF0IS3 register.

This register is write-only, in 8-bit units. If this register is read, the value FFH is read.

FW can clear an interrupt source by writing 0 to the corresponding bit of this register. Even a bit that is automatically cleared to 0 by hardware can be cleared by FW before it is cleared by hardware. Writing 0 to a bit of this register automatically sets the bit to 1. Writing 1 is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 2, 4) and the current setting of the interface.

UF0IC3	7 BKO FLC	2	6 BKO2 NLC	5 BKO2 NAKC	4 BKO2 DTC	3 BKO1 FLC	2 BKO1 NLC	1 BKO1 NAKC	0 BKO1 DTC	Address 00200042H	After reset FFH		
Bit posit	tion		Bit name					Function					
7, 3		BK	OnFLC	These 0: 0	These bits clear the BLKOnFL interrupt. 0: Clear								
6, 2		BK	OnNLC	These 0: 0	bits clear t Clear	he BLKOni	NL interrupt	t.					
5, 1		BK	OnNAKC	These 0: 0	bits clear t Clear	he BLKOni	NK interrup	t.					
4, 0		BK	OnDTC	These 0: 0	bits clear t Clear	he BLKOn[DT interrup	t.					
Remark	n = 1	I, 2											

(20) R511: Receive 256- to 511-byte frame counter

Access This register can be read and written in 32-bit units.

Address 002E 018CH

Default value 0000 0000H. This register is cleared to its default value by all types of resets.

31	30	29	28	27	26	25	24
R51131	R51130	R51129	R51128	R51127	R51126	R51125	R51124
R/W							
23	22	21	20	19	18	17	16
R51123	R51122	R51121	R51120	R51119	R51118	R51117	R51116
R/W							
15	14	13	12	11	10	9	8
R51115	R51114	R51113	R51112	R51111	R51110	R5119	R5118
R/W							
7	6	5	4	3	2	1	0
R5117	B5116	B5115	B5114	R5113	R5112	R5111	R5110
	10110						

Bit	Name	Description
31 to 0	R511[31:0]	This counter is incremented if the receive packet length is 256 to 511 bytes. A packet containing a CRC error, symbol error, or length/type error is also counted.

Figure 23-15. Accessing a PHY Register

6 0 Selects n as on-chin disconnee When DF Normal c	6 0 Selects n	5 0	4 0	3 0	2	1	<0>			
0 Selects n as on-chi disconned When DF Normal c	0 Selects n	0	0	0	0					
Selects n as on-chi disconned When DF Normal c	Selects n		•		U	0	OCDM0			
Selects n as on-chij disconned When DF Normal c	Selects n									
Selects n as on-chij disconned When DF Normal c	Selects n		O	peration mo	de					
as on-chi disconnee When DF Normal c	oo on ohir	ormal oper	ation mode	e (in which a	a pin that f	unctions al	ternately			
When DF Normal c	as on-chip	o debug fur	nction pin is	s used as a	port/peripl	neral functi	on pin) and			
When DI Normal c	disconnects the on-chip pull-down resistor of the P54/INTP11/DRST pin.									
Normal c	When DF	RST pin is I	ow:							
a second a la fina de	Normal o	peration m	ode (in wh	ich a pin tha	at function	s alternate	ly as an			
When D	When DF	$\frac{1}{1}$	lion pin is t hiah:	ised as a po	ort/peripne	ral function	n pin)			
On-chip	On-chip	lebug mod	le (in which	n a pin that f	functions a	lternately a	as an			
on-chip c	on-chip d	ebug funct	tion pin is ι	ised as an o	on-chip de	bug mode	pin)			
t, any of to the F bit. In th CDM0 bi /INTP11/	t, any of to the F bit. In th CDM0 bi INTP11/	the follow 254/INTP1 is case, f t to 0. DRST pin	wing acti 11/DRST take the f n to low le	ons must pin. following evel until (be taker actions. <1> is co	n. mpleted.				
s an on- to 0.	s an on- to 0.	chip pul	l-down re	esistor. T	his resis	stor is d	isconnected whe			
0	0	10 tc	OCDM (1: Pull ο 100 kΩ ω (TYP.))	● 0 flag -down ON,	0: Pull-dov	vn OFF)				
:	. (○ 10 to (30 f)	OCDM (1: Pull 10 to 100 kΩ (30 kΩ (TYP.))	$\bigcirc \qquad \bigcirc \qquad$	$\bigcirc \qquad \bigcirc \qquad$	$\bigcirc \qquad \bigcirc \qquad$			

			(7/43)
Symbol	Name	Unit	Page
C0MDATA226	CAN0 message data byte 2 register 26	CAN	1104
C0MDATA227	CAN0 message data byte 2 register 27	CAN	1104
C0MDATA228	CAN0 message data byte 2 register 28	CAN	1104
C0MDATA229	CAN0 message data byte 2 register 29	CAN	1104
C0MDATA230	CAN0 message data byte 2 register 30	CAN	1104
C0MDATA2300	CAN0 message data byte 23 register 00	CAN	1104
C0MDATA2301	CAN0 message data byte 23 register 01	CAN	1104
C0MDATA2302	CAN0 message data byte 23 register 02	CAN	1104
C0MDATA2303	CAN0 message data byte 23 register 03	CAN	1104
COMDATA2304	CAN0 message data byte 23 register 04	CAN	1104
C0MDATA2305	CAN0 message data byte 23 register 05	CAN	1104
C0MDATA2306	CAN0 message data byte 23 register 06	CAN	1104
COMDATA2307	CAN0 message data byte 23 register 07	CAN	1104
C0MDATA2308	CAN0 message data byte 23 register 08	CAN	1104
C0MDATA2309	CAN0 message data byte 23 register 09	CAN	1104
C0MDATA231	CAN0 message data byte 2 register 31	CAN	1104
C0MDATA2310	CAN0 message data byte 23 register 10	CAN	1104
C0MDATA2311	CAN0 message data byte 23 register 11	CAN	1104
C0MDATA2312	CAN0 message data byte 23 register 12	CAN	1104
C0MDATA2313	CAN0 message data byte 23 register 13	CAN	1104
C0MDATA2314	CAN0 message data byte 23 register 14	CAN	1104
C0MDATA2315	CAN0 message data byte 23 register 15	CAN	1104
C0MDATA2316	CAN0 message data byte 23 register 16	CAN	1104
C0MDATA2317	CAN0 message data byte 23 register 17	CAN	1104
C0MDATA2318	CAN0 message data byte 23 register 18	CAN	1104
C0MDATA2319	CAN0 message data byte 23 register 19	CAN	1104
C0MDATA2320	CAN0 message data byte 23 register 20	CAN	1104
C0MDATA2321	CAN0 message data byte 23 register 21	CAN	1104
C0MDATA2322	CAN0 message data byte 23 register 22	CAN	1104
C0MDATA2323	CAN0 message data byte 23 register 23	CAN	1104
C0MDATA2324	CAN0 message data byte 23 register 24	CAN	1104
C0MDATA2325	CAN0 message data byte 23 register 25	CAN	1104
C0MDATA2326	CAN0 message data byte 23 register 26	CAN	1104
C0MDATA2327	CAN0 message data byte 23 register 27	CAN	1104
C0MDATA2328	CAN0 message data byte 23 register 28	CAN	1104
C0MDATA2329	CAN0 message data byte 23 register 29	CAN	1104
C0MDATA2330	CAN0 message data byte 23 register 30	CAN	1104
C0MDATA2331	CAN0 message data byte 23 register 31	CAN	1104
COMDATA300	CAN0 message data byte 3 register 00	CAN	1104
COMDATA301	CAN0 message data byte 3 register 01	CAN	1104
C0MDATA302	CAN0 message data byte 3 register 02	CAN	1104

		I	(17/43)
Symbol	Name	Unit	Page
CF1TX	CSIF1 transmit data register	CSIF	900
CF1TXL	CSIF1 transmit data register L	CSIF	900
CF2CTL0	CSIF2 control register 0	CSIF	901
CF2CTL1	CSIF2 control register 1	CSIF	904
CF2CTL2	CSIF2 control register 2	CSIF	905
CF2RIC	Interrupt control register	INTC	1577
CF2RX	CSIF2 receive data register	CSIF	900
CF2RXL	CSIF2 receive data register L	CSIF	900
CF2STR	CSIF2 status register	CSIF	907
CF2TIC	Interrupt control register	INTC	1577
CF2TX	CSIF2 transmit data register	CSIF	900
CF2TXL	CSIF2 transmit data register L	CSIF	900
CF3CTL0	CSIF3 control register 0	CSIF	901
CF3CTL1	CSIF3 control register 1	CSIF	904
CF3CTL2	CSIF3 control register 2	CSIF	905
CF3RIC	Interrupt control register	INTC	1577
CF3RX	CSIF3 receive data register	CSIF	900
CF3RXL	CSIF3 receive data register L	CSIF	900
CF3STR	CSIF3 status register	CSIF	907
CF3TIC	Interrupt control register	INTC	1577
CF3TX	CSIF3 transmit data register	CSIF	900
CF3TXL	CSIF3 transmit data register L	CSIF	900
CF4CTL0	CSIF4 control register 0	CSIF	901
CF4CTL1	CSIF4 control register 1	CSIF	904
CF4CTL2	CSIF4 control register 2	CSIF	905
CF4RIC	Interrupt control register	INTC	1577
CF4RX	CSIF4 receive data register	CSIF	900
CF4RXL	CSIF4 receive data register L	CSIF	900
CF4STR	CSIF4 status register	CSIF	907
CF4TIC	Interrupt control register	INTC	1577
CF4TX	CSIF4 transmit data register	CSIF	900
CF4TXL	CSIF4 transmit data register L	CSIF	900
CF5CTL0	CSIF5 control register 0	CSIF	901
CF5CTL1	CSIF5 control register 1	CSIF	904
CF5CTL2	CSIF5 control register 2	CSIF	905
CF5RIC	Interrupt control register	INTC	1577
CF5RX	CSIF5 receive data register	CSIF	900
CF5RXL	CSIF5 receive data register L	CSIF	900
CF5STR	CSIF5 status register	CSIF	907
CF5TIC	Interrupt control register	INTC	1577
CF5TX	CSIF5 transmit data register	CSIF	900

